Fabrication of highly efficient heterostructured Ag-CeO2/g-C3N4 hybrid photocatalyst with enhanced visible-light photocatalytic activity
来源期刊:JOURNAL OF RARE EARTHS2019年第12期
论文作者:Chengbao Liu Dongxing Mao Jian Pan Junchao Qian Wenya Zhang Feng Chen Zhigang Chen Yenan Song
文章页码:1269 - 1278
摘 要:On the basis of hydrothermal synthesis of Ag-CeO2 microspheres,Ag-CeO2/g-C3N4 composite photocatalyst with heterostructure was prepared by simple solvent evaporation of Ag-CeO2 and g-C3N4.To characterize the composition,structure,morphology and light absorption properties of the as-prepared Ag-CeO2/g-C3N4 composites,XRD,FTIR XPS,SEM,TEM,PL,BET and UV-vis DRS were used,respectively.The as-prepared photocatalyst was subjected to photocatalytic degradation of pollutants,and the prepared composite material has excellent photocatalytic activity for photodegradation of methylene blue(MB).The research shows that the photocatalytic properties of Ag-CeO2/g-C3N4 composites were related to the mass ratio of Ag-CeO2 microspheres and g-C3N4 nanosheets.When the ratio of Ag-CeO2 microspheres:g-C3N4 is 1:5,the composites have the highest photocatalytic activity,which was 9.6 and 3.3 times that of single Ag-CeO2 and g-C3N4,respectively.The improvement of photocatalytic activity is attributed to the heterostructure between the composite materials and the addition of noble metal silver,and the degradation of methylene blue by the visible light irradiation material is greatly improved.Finally,an attempt was made to analyze the principle of photocatalytic degradation of pollutants in prepared materials.
Chengbao Liu1,2,Dongxing Mao1,Jian Pan1,Junchao Qian1,Wenya Zhang1,Feng Chen1,Zhigang Chen1,Yenan Song3
1. Jiangsu Key Laboratory for Environment Functional Materials,Suzhou University of Science and Technology2. Department of Materials Science and Engineering,Rutgers-The State University of New Jersey3. Engineering Research Center for Nanophotonics and Advanced Instrument,Ministry of Education,School of Physics and Materials Science,East China Normal University
摘 要:On the basis of hydrothermal synthesis of Ag-CeO2 microspheres,Ag-CeO2/g-C3N4 composite photocatalyst with heterostructure was prepared by simple solvent evaporation of Ag-CeO2 and g-C3N4.To characterize the composition,structure,morphology and light absorption properties of the as-prepared Ag-CeO2/g-C3N4 composites,XRD,FTIR XPS,SEM,TEM,PL,BET and UV-vis DRS were used,respectively.The as-prepared photocatalyst was subjected to photocatalytic degradation of pollutants,and the prepared composite material has excellent photocatalytic activity for photodegradation of methylene blue(MB).The research shows that the photocatalytic properties of Ag-CeO2/g-C3N4 composites were related to the mass ratio of Ag-CeO2 microspheres and g-C3N4 nanosheets.When the ratio of Ag-CeO2 microspheres:g-C3N4 is 1:5,the composites have the highest photocatalytic activity,which was 9.6 and 3.3 times that of single Ag-CeO2 and g-C3N4,respectively.The improvement of photocatalytic activity is attributed to the heterostructure between the composite materials and the addition of noble metal silver,and the degradation of methylene blue by the visible light irradiation material is greatly improved.Finally,an attempt was made to analyze the principle of photocatalytic degradation of pollutants in prepared materials.
关键词: