基于多样性检测的双子群多目标粒子群算法
来源期刊:控制与决策2017年第12期
论文作者:韩敏 张丽君
文章页码:2268 - 2272
关键词:多样性;子群;自适应;多目标优化;粒子群优化;
摘 要:为了平衡多目标粒子群算法的多样性和收敛性,提出一种基于多样性检测的多子群多目标粒子群算法.首先,将多样性检测方法引入到多目标粒子群算法中,并结合多目标粒子群算法的特点进行改进.然后,将种群分为两个不同分工的子群,一个子群保持较好的多样性,在搜索空间进行全局搜索;另一个子群保持较好的收敛性,在Pareto前沿附近进行局部搜索.最后,根据多样性度量指标调整两个子群的搜索行为,以达到兼顾多样性和收敛性的目的.在标准测试问题上的仿真结果表明了所提算法的有效性.
韩敏,张丽君
大连理工大学电子信息与电气工程学院
摘 要:为了平衡多目标粒子群算法的多样性和收敛性,提出一种基于多样性检测的多子群多目标粒子群算法.首先,将多样性检测方法引入到多目标粒子群算法中,并结合多目标粒子群算法的特点进行改进.然后,将种群分为两个不同分工的子群,一个子群保持较好的多样性,在搜索空间进行全局搜索;另一个子群保持较好的收敛性,在Pareto前沿附近进行局部搜索.最后,根据多样性度量指标调整两个子群的搜索行为,以达到兼顾多样性和收敛性的目的.在标准测试问题上的仿真结果表明了所提算法的有效性.
关键词:多样性;子群;自适应;多目标优化;粒子群优化;