简介概要

Controlled patterning of upconversion nanocrystals through capillary force

来源期刊:Journal of Rare Earths2020年第5期

论文作者:Yiming Wu Jiahui Xu Xiaogang Liu

文章页码:546 - 551

摘    要:Lanthanide-doped upconversion nanoparticles(UCNPs) can absorb near-infrared photons and convert them into visible and ultraviolet emissions.These nanomaterials possess extraordinary optical performance and hold potential as active platforms for a variety of technological applications.The ability to fabricate highly ordered nanoparticle-based photonic elements over a large area is of fundamental significance for luminescence tuning.Despite all the efforts made,however,large-area spatial patterning of UCNPs into ordered arrays with high controllability remains a challenge.In this study,we report a highthroughput strategy to pattern optical nanomaterials through the use of polymer microspheres and templated assembly of UCNPs.This technique utilizes capillary force to drive hybrid clusters into the physical template,resulting in large-area,spatially ordered arrays of particles.The findings reported in this work may promote the development of novel nonlinear optical devices,such as solid-state laser arrays,high-density optical storage,and anti-counterfeiting labels.

详情信息展示

Controlled patterning of upconversion nanocrystals through capillary force

Yiming Wu1,Jiahui Xu1,Xiaogang Liu1,2

1. Department of Chemistry,National University of Singapore2. The N.1 Institute for Health,National University of Singapore

摘 要:Lanthanide-doped upconversion nanoparticles(UCNPs) can absorb near-infrared photons and convert them into visible and ultraviolet emissions.These nanomaterials possess extraordinary optical performance and hold potential as active platforms for a variety of technological applications.The ability to fabricate highly ordered nanoparticle-based photonic elements over a large area is of fundamental significance for luminescence tuning.Despite all the efforts made,however,large-area spatial patterning of UCNPs into ordered arrays with high controllability remains a challenge.In this study,we report a highthroughput strategy to pattern optical nanomaterials through the use of polymer microspheres and templated assembly of UCNPs.This technique utilizes capillary force to drive hybrid clusters into the physical template,resulting in large-area,spatially ordered arrays of particles.The findings reported in this work may promote the development of novel nonlinear optical devices,such as solid-state laser arrays,high-density optical storage,and anti-counterfeiting labels.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号