简介概要

Enhanced Fatigue Property of Welded S355J2W Steel by Forming a Gradient Nanostructured Surface Layer

来源期刊:Acta Metallurgica Sinica2020年第9期

论文作者:Lu An Yan-Tao Sun Shan-Ping Lu Zhen-Bo Wang

文章页码:1252 - 1258

摘    要:Welded joints are usually characterized by microstructural and compositional inhomogeneities, which may significantly degrade their fatigue properties and result in unpredictable failures. The present work demonstrates a novel and simple method to effectively optimize the microstructure in the surface layer and promote the fatigue properties of welded specimens. By a recently developed approach—surface mechanical rolling treatment(SMRT), a gradient nanostructured surface layer is formed on welded S355 J2 W steel specimens. The mean grain size is refined to nanometer scale, and the hardness is significantly enhanced in the SMRT surface layer. Independent of the initially inhomogeneous microstructure and hardness distributions, the microstructure and hardness distributions in the surface layers are comparable on different zones of a welded specimen after SMRT with the same procedure. Consequently, fatigue property of the SMRT specimens is significantly enhanced relative to that of the as-welded specimens within the high cycle fatigue regime.

详情信息展示

Enhanced Fatigue Property of Welded S355J2W Steel by Forming a Gradient Nanostructured Surface Layer

Lu An,Yan-Tao Sun,Shan-Ping Lu,Zhen-Bo Wang

Shenyang National Laboratory for Materials Science, Institute of Metal Research , Chinese Academy of Sciences

摘 要:Welded joints are usually characterized by microstructural and compositional inhomogeneities, which may significantly degrade their fatigue properties and result in unpredictable failures. The present work demonstrates a novel and simple method to effectively optimize the microstructure in the surface layer and promote the fatigue properties of welded specimens. By a recently developed approach—surface mechanical rolling treatment(SMRT), a gradient nanostructured surface layer is formed on welded S355 J2 W steel specimens. The mean grain size is refined to nanometer scale, and the hardness is significantly enhanced in the SMRT surface layer. Independent of the initially inhomogeneous microstructure and hardness distributions, the microstructure and hardness distributions in the surface layers are comparable on different zones of a welded specimen after SMRT with the same procedure. Consequently, fatigue property of the SMRT specimens is significantly enhanced relative to that of the as-welded specimens within the high cycle fatigue regime.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号