Effects of La-involvement on biomass pyrolysis behaviors and properties of produced biochar
来源期刊:JOURNAL OF RARE EARTHS2017年第6期
论文作者:郭海艳 马伦杰 沈飞 杨刚 张延宗 邓仕槐 张静 宋春 曾咏梅
文章页码:593 - 601
摘 要:In order to evaluate the effects of La-involvement on biomass pyrolysis behaviors and properties of produced biochar, oak sawdust(OS) and corn straw(CS) were employed for thermogravimetric-differential thermogravimetric(TG-DTG) analysis and producing biochar with/without La-involvement. Results indicated the initial and final temperatures were shifted toward lower temperature as LaCl3 was involved in pyrolysis. Mass loss and average mass loss rate during pyrolysis decreased with La-involvement. The kinetics indicated that the first-order reaction kinetic model well matched the pyrolysis process. As La-involved OS and CS were employed, their apparent activation energies(Ea) were reduced, and their pyrolysis characteristic index(I) were higher comparing with the OS and CS without La-involvement. Based on the produced biochar, the yield and ash content were increased by La-involvement, and the O/C ratio and iodine sorption value(ISV) were also enhanced. Obviously, the loaded LaCl3 could facilitate pyrolysis process, and the produced biochar exhibited a great adsorption potential in aqueous solution. According to the results from FT-IR(Fourier transform infrared spectroscopy) analysis, La in pyrolysis functioned as accelerating lignin decomposition via condensing –OH, breaking aliphatic C–H and aromatic rings on lignin, cutting the links of C-O-C among the monomers in lignocellulose. LaCl3 was finally converted to La2O3 in biochar after pyrolysis.
郭海艳1,2,马伦杰1,2,沈飞1,2,杨刚1,2,张延宗2,邓仕槐1,2,张静1,2,宋春1,2,曾咏梅1,2
1. Institute of Ecological and Environmental Sciences, Sichuan Agricultural University2. Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University
摘 要:In order to evaluate the effects of La-involvement on biomass pyrolysis behaviors and properties of produced biochar, oak sawdust(OS) and corn straw(CS) were employed for thermogravimetric-differential thermogravimetric(TG-DTG) analysis and producing biochar with/without La-involvement. Results indicated the initial and final temperatures were shifted toward lower temperature as LaCl3 was involved in pyrolysis. Mass loss and average mass loss rate during pyrolysis decreased with La-involvement. The kinetics indicated that the first-order reaction kinetic model well matched the pyrolysis process. As La-involved OS and CS were employed, their apparent activation energies(Ea) were reduced, and their pyrolysis characteristic index(I) were higher comparing with the OS and CS without La-involvement. Based on the produced biochar, the yield and ash content were increased by La-involvement, and the O/C ratio and iodine sorption value(ISV) were also enhanced. Obviously, the loaded LaCl3 could facilitate pyrolysis process, and the produced biochar exhibited a great adsorption potential in aqueous solution. According to the results from FT-IR(Fourier transform infrared spectroscopy) analysis, La in pyrolysis functioned as accelerating lignin decomposition via condensing –OH, breaking aliphatic C–H and aromatic rings on lignin, cutting the links of C-O-C among the monomers in lignocellulose. LaCl3 was finally converted to La2O3 in biochar after pyrolysis.
关键词: