Efficiency analysis of trilateral-cycle power systems for waste heat recovery-to-power generation

来源期刊:中南大学学报(英文版)2016年第12期

论文作者:Habeeb A. AJIMOTOKAN

文章页码:3160 - 3170

Key words:trilateral cycle; waste heat recovery-to-power generation; thermodynamic performance simulation; efficiency analysis; process development and integration

Abstract: Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply. Among them, the proposed trilateral-cycle (TLC) power system exhibits high thermodynamic efficiency during heat recovery-to-power from low-to-medium temperature heat sources. The TLCs are proposed and analysed using n-pentane as working fluid for waste heat recovery-to-power generation from low-grade heat source to evaluate the thermodynamic efficiency of the cycles. Four different single stage TLC configurations with distinct working principles are modelled thermodynamically using engineering equation solver. Based on the thermodynamic framework, thermodynamic performance simulation and efficiency analysis of the cycles as well as the exergy efficiencies of the heating and condensing processes are carried out and compared in their efficiency. The results show that the simple TLC, recuperated TLC, reheat TLC and regenerative TLC operating at subcritical conditions with cycle high temperature of 473 K can attain thermal efficiencies of 21.97%, 23.91%, 22.07% and 22.9%, respectively. The recuperated TLC attains the highest thermodynamic efficiency at the cycle high temperature because of its lowest exergy destruction rates in the heat exchanger and condenser. The efficiency analysis carried out would assist in guiding thermodynamic process development and thermal integration of the proposed cycles.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号