基于Elman神经网络的烟煤与生物质混烧灰熔点预测

来源期刊:中南大学学报(自然科学版)2016年第12期

论文作者:蒋绍坚 付国富 黄靓云 唐远程 蔡攀 彭好义

文章页码:4240 - 4248

关键词:Elman神经网络;烟煤;生物质;灰熔点;预测模型

Key words:Elman neural network; bituminous coal; biomass; ash fusion temperature; forecasting model

摘    要:基于实验法测定烟煤与不同生物质混烧灰熔点时存在工作量大、时效性差的问题,通过分析烟煤分别与玉米秸秆和木屑混烧灰的成分,并以灰成分为输入量,建立基于Elman神经网络的灰熔点预测模型。采用Levenberg-Marquardt反向传播算法训练模型,利用残差检验与后验差检验法检验模型预测性能。研究结果表明:玉米秸秆灰、木屑灰分别含有较高的K2O和CaO,与烟煤灰相比,2种生物质灰的碱性氧化物(Na2O,K2O,CaO,MgO)质量分数较高,酸性氧化物(Al2O3和SiO2)质量分数较低;检验结果验证了该模型具有较高的预测精度和较强的泛化能力。

Abstract: Considering that experimental determination of ash fusion temperatures of bituminous coal and different blended biomass is often onerous and time-consuming, an Elman neural network-based model to forecast ash fusion temperatures was presented by analyzing the ash compositions of bituminous coal blended corn straw or sawdust with ash ingredients as inputs. The model was trained by adopting LM back-propagation algorithm and its forecasting performance was assessed by employing the method of residual and posterior error test. The results show that corn stalk ash and sawdust ash are rich in K2O and CaO, respectively. The two biomass ashes contain more alkaline oxides (Na2O,K2O,CaO,MgO), but less acidic oxides (Al2O3, SiO2) compared to bituminous coal ash. The test results validate that the model has high accuracy and strong generalization ability.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号