简介概要

Influences of NiCO3 content on the microstructure and magnetic properties of Ni0.5Zn0.5Fe2O4 powders prepared by SHS

来源期刊:Rare Metals2009年第5期

论文作者:WANG Keqiang, HE Xiaodong, LI Xiao, JIANG Jiuxing, and SUN Yue Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin , China

文章页码:500 - 503

摘    要:Stoichiometric Ni0.5Zn0.5Fe2O4 powders were produced by self-propagating high temperature synthesis (SHS). The effects of NiCO3 content in the raw materials on the microstructure and magnetic properties of Ni-Zn ferrite powders were systematically studied. The Ni0.5Zn0.5Fe2O4 powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The magnetic properties of the powders were evaluated by vibrating sample magnetometry (VSM). The results show that the introduction of NiCO3 into reactants improves the con- version percentage and refines the Ni0.5Zn0.5Fe2O4 particles. The increase of NiCO3 content enhances the magnetic properties of Ni0.5Zn0.5Fe2O4. Particularly, the saturation magnetization reaches the maximum when the NiCO3 content is 3 at.%.

详情信息展示

Influences of NiCO3 content on the microstructure and magnetic properties of Ni0.5Zn0.5Fe2O4 powders prepared by SHS

WANG Keqiang, HE Xiaodong, LI Xiao, JIANG Jiuxing, and SUN Yue Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China

摘 要:Stoichiometric Ni0.5Zn0.5Fe2O4 powders were produced by self-propagating high temperature synthesis (SHS). The effects of NiCO3 content in the raw materials on the microstructure and magnetic properties of Ni-Zn ferrite powders were systematically studied. The Ni0.5Zn0.5Fe2O4 powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The magnetic properties of the powders were evaluated by vibrating sample magnetometry (VSM). The results show that the introduction of NiCO3 into reactants improves the con- version percentage and refines the Ni0.5Zn0.5Fe2O4 particles. The increase of NiCO3 content enhances the magnetic properties of Ni0.5Zn0.5Fe2O4. Particularly, the saturation magnetization reaches the maximum when the NiCO3 content is 3 at.%.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号