烟气脱硝喷氨量SA-RBF神经网络最优控制
来源期刊:控制工程2012年第6期
论文作者:周洪煜 赵乾 张振华 汪正海
文章页码:947 - 951
关键词:选择性催化还原;烟气脱硝;径向基神经网络;动态结构;
摘 要:对于选择性催化还原(SCR)烟气脱硝装置喷氨量的精确控制,传统PID控制器的参数是基于设计负荷预先整定,在变工况下系统呈现出强非线性和滞后性,难以确保最佳控制量。通过引入动态结构的RBF神经网络,利用敏感度法来增加和删除神经元,解决RBF神经网络结构过大或过小的问题,保证预测网络结构的精度。该网络综合学习SCR脱硝装置主要相关参数,以NOx排放量与设定值之间误差最小作为训练信号,实现喷氨量的最优控制。实验结果表明,在变工况下,此方案与传统PID相比,能满足SCR出口NOx排放量,有效减少了氨气逃逸量,具有良好的变工况适应能力。
周洪煜1,赵乾1,张振华2,汪正海1
1. 重庆大学动力工程学院2. 华电电力科学研究院
摘 要:对于选择性催化还原(SCR)烟气脱硝装置喷氨量的精确控制,传统PID控制器的参数是基于设计负荷预先整定,在变工况下系统呈现出强非线性和滞后性,难以确保最佳控制量。通过引入动态结构的RBF神经网络,利用敏感度法来增加和删除神经元,解决RBF神经网络结构过大或过小的问题,保证预测网络结构的精度。该网络综合学习SCR脱硝装置主要相关参数,以NOx排放量与设定值之间误差最小作为训练信号,实现喷氨量的最优控制。实验结果表明,在变工况下,此方案与传统PID相比,能满足SCR出口NOx排放量,有效减少了氨气逃逸量,具有良好的变工况适应能力。
关键词:选择性催化还原;烟气脱硝;径向基神经网络;动态结构;