简介概要

Microstructure and thermal cycling behavior of nanostructured yttria partially stabilized zirconia (YSZ) thermal barrier coatings

来源期刊:JOURNAL OF RARE EARTHS2010年第S1期

论文作者:孙杰 张丽丽 赵丹

文章页码:198 - 201

摘    要:Nanostructured yttria partially stabilized zirconia(YSZ) coatings were prepared by atmospheric plasma spraying(APS) using the conglomeration made by zirconia nanoparticle as the raw materials.The measurement methods,which consisted of scanning electron microscopy(SEM),transmission electron microscopy(TEM) and thermal cycling behavior,were used to character the morphology,composition and thermal oxidation behavior of the powder and the coatings.From the results,it was shown that the YSZ coating was the laminar structure,and the elements distribution in the bond and top coat were well-proportioned.The YSZ coatings were composed of fine grains with size ranging from 30 to 110 nm.The laminar layers with columnar grains were surrounded with unmelted parts of the nanostructured powder and some equiaxed grains.In the as-sprayed nanostructured zirconia coatings,there existed pores that were less than 1 μm.The cracks were observed on some of the crystal border.The cyclic oxidation experiment showed that the nanostructured coating had longer thermal cycling lifetime to exhibit the promising thermal cyclic oxidation resistance.The failure of the nanostructured TBC was similar to the failure of conventional APS TBC.

详情信息展示

Microstructure and thermal cycling behavior of nanostructured yttria partially stabilized zirconia (YSZ) thermal barrier coatings

孙杰,张丽丽,赵丹

School of Environmental and Chemical Engineering,Shenyang Ligong University

摘 要:Nanostructured yttria partially stabilized zirconia(YSZ) coatings were prepared by atmospheric plasma spraying(APS) using the conglomeration made by zirconia nanoparticle as the raw materials.The measurement methods,which consisted of scanning electron microscopy(SEM),transmission electron microscopy(TEM) and thermal cycling behavior,were used to character the morphology,composition and thermal oxidation behavior of the powder and the coatings.From the results,it was shown that the YSZ coating was the laminar structure,and the elements distribution in the bond and top coat were well-proportioned.The YSZ coatings were composed of fine grains with size ranging from 30 to 110 nm.The laminar layers with columnar grains were surrounded with unmelted parts of the nanostructured powder and some equiaxed grains.In the as-sprayed nanostructured zirconia coatings,there existed pores that were less than 1 μm.The cracks were observed on some of the crystal border.The cyclic oxidation experiment showed that the nanostructured coating had longer thermal cycling lifetime to exhibit the promising thermal cyclic oxidation resistance.The failure of the nanostructured TBC was similar to the failure of conventional APS TBC.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号