基于改进广义极值分布的核管道最大腐蚀深度预测

来源期刊:中南大学学报(自然科学版)2013年第5期

论文作者:周国强 王雪青 刘锐

文章页码:1926 - 1931

关键词:广义极值分布;免疫遗传算法;核管道;腐蚀深度;预测

Key words:generalized extreme value distribution; immune genetic algorithm; nuclear pipes; corrosion depth; prediction

摘    要:针对核管道腐蚀的环境复杂性和过程随机性问题以及极值分布模型选择不当所引起的拟合误差问题,采用广义极值分布模型预测核管道腐蚀深度的发展规律,并提出基于免疫遗传算法参数优化的核管道最大腐蚀深度预测及评估方法:对核管道取样管段上腐蚀深度进行统计分析,计算相应的累计概率;利用免疫遗传算法优化广义极值分布函数的统计参数,得到核管道最大腐蚀深度的概率分布函数;由小样本腐蚀深度预测整条管道的最大腐蚀深度ydi,并评估超过最大腐蚀深度ydi的概率。利用不同核管道腐蚀深度进行计算机预测仿真。研究结果表明:改进后的广义极值分布模型不会受限于样本极值数据的具体分布,具有较好的通用性,且模型参数寻优过程收敛速度快,拟合效果较理想。

Abstract: Considering the complexity of corrosion environment, randomness of corrosion process, and the fitting error caused by improper selection of extreme value distribution, the generalized extreme value distribution model was applied to predict the development law of corrosion depth, and a method based on the immune genetic algorithm for parameter optimization in maximum corrosion depth of nuclear pipes was presented. Firstly, the statistical analysis of corrosion depth from the samples of nuclear pipes was made to calculate the corresponding cumulative probability; secondly, by using immune genetic algorithm to optimize the statistical parameters of generalized extreme value distribution model, the probability distribution function was obtained; finally, the maximum corrosion depth ydi of nuclear pipes was predicted by small sample data, and the probability which was over the maximum corrosion depth ydi was assessed. The prediction simulation of different data from different samples of nuclear pipes was made. The results show that the modified generalized extreme value distribution methodology based on immune genetic algorithm to predict the maximum corrosion depth of nuclear pipes corrosion cannot be limited by the extreme value distribution types of sample data. It has good universality, and its velocity and accuracy of convergence are also perfect.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号