简介概要

Nano-tribological characteristics of lanthanum-based thin films on sulfonated self-assembled monolayer of 3-mercaptopropyl trimethoxysilane

来源期刊:JOURNAL OF RARE EARTHS2008年第1期

论文作者:BAI Tao CHENG Xianhua

Key words:self-assembled monolayer; atomic force microscope; X-ray photoelectron spectrometry; nano-tribological characteristics; rare earths;

Abstract: Silane coupling reagent (3-mercaptopropyl trimethoxysilane (MPTS)) was prepared on silicon substrate to form two-dimensional Self-Assembled Monolayer (SAM) and the terminal -SH group in the film was in situ oxidized to -SO3H group to endow the film with good chemisorption ability. Thus, lanthanum-based thin films were deposited on oxidized MPTS-SAM to form rare earth composite thin films (RE thin films), making use of the chemisorption ability of the --SO3H group. Atomic Force Microscope (AFM), X-ray Photoelectron Spectrometry (XPS), and contact angle measurements were used to characterize the RE thin films. Adhesive force and friction force of the RE thin films and silicon substrate were measured under various applied normal loads and scanning speed of AFM tip. The results showed that the friction force increased with applied normal loads and scanning speed of AFM tip. To study the effect of capillary force, tests were performed in various relative humidities. The results showed that the adhesive force of silicon substrate increased with relative humidity and the adhesive force of RE thin films only increased slightly with relative humidity. Research showed that surfaces with higher hydrophobic property reveal lowered adhesive and friction forces.

详情信息展示

Nano-tribological characteristics of lanthanum-based thin films on sulfonated self-assembled monolayer of 3-mercaptopropyl trimethoxysilane

BAI Tao1,CHENG Xianhua2

(1.School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China;
2.National Engineering Research Center for Nanotechnology, Shanghai, 20023Z China)

Abstract:Silane coupling reagent (3-mercaptopropyl trimethoxysilane (MPTS)) was prepared on silicon substrate to form two-dimensional Self-Assembled Monolayer (SAM) and the terminal -SH group in the film was in situ oxidized to -SO3H group to endow the film with good chemisorption ability. Thus, lanthanum-based thin films were deposited on oxidized MPTS-SAM to form rare earth composite thin films (RE thin films), making use of the chemisorption ability of the --SO3H group. Atomic Force Microscope (AFM), X-ray Photoelectron Spectrometry (XPS), and contact angle measurements were used to characterize the RE thin films. Adhesive force and friction force of the RE thin films and silicon substrate were measured under various applied normal loads and scanning speed of AFM tip. The results showed that the friction force increased with applied normal loads and scanning speed of AFM tip. To study the effect of capillary force, tests were performed in various relative humidities. The results showed that the adhesive force of silicon substrate increased with relative humidity and the adhesive force of RE thin films only increased slightly with relative humidity. Research showed that surfaces with higher hydrophobic property reveal lowered adhesive and friction forces.

Key words:self-assembled monolayer; atomic force microscope; X-ray photoelectron spectrometry; nano-tribological characteristics; rare earths;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号