Preparation and catalytic activity of CO-resistant catalyst core-shell Au@Pt/C for methanol oxidation
来源期刊:Rare Metals2012年第5期
论文作者:FENG Rongjuan, LI Min, and LIU Jiaxiang College of Materials Science and Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing , China
文章页码:451 - 456
摘 要:Au@Pt core-shell nanoparticles were successfully synthesized by a successive reduction method and then assembled on Vulcan XC-72 carbon surface. Furthermore, its composition, morphology, structure, and activity towards methanol oxidation were characterized by UV-vis spectrometry, transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Results reveal that Au@Pt/C catalyst has better activity towards methanol oxidation than the pure platinum prepared under the same conditions. When the atomic ratio of Au to Pt in the prepared Au@Pt/C catalyst is 1:2, this catalyst exhibits best electrocatalytic activity towards methanol oxidation in acidic media, and the peak current density on this catalyst is 2.0 times higher than that on Pt/C catalyst. The better catalytic activity of Au@Pt/C results from its better resistance to toxic CO than Pt/C because the CO oxidation on Au@Pt/C is 60 mV more negative than the case on Pt/C.
FENG Rongjuan, LI Min, and LIU Jiaxiang College of Materials Science and Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
摘 要:Au@Pt core-shell nanoparticles were successfully synthesized by a successive reduction method and then assembled on Vulcan XC-72 carbon surface. Furthermore, its composition, morphology, structure, and activity towards methanol oxidation were characterized by UV-vis spectrometry, transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Results reveal that Au@Pt/C catalyst has better activity towards methanol oxidation than the pure platinum prepared under the same conditions. When the atomic ratio of Au to Pt in the prepared Au@Pt/C catalyst is 1:2, this catalyst exhibits best electrocatalytic activity towards methanol oxidation in acidic media, and the peak current density on this catalyst is 2.0 times higher than that on Pt/C catalyst. The better catalytic activity of Au@Pt/C results from its better resistance to toxic CO than Pt/C because the CO oxidation on Au@Pt/C is 60 mV more negative than the case on Pt/C.
关键词: