简介概要

Preparation and catalytic activity of CO-resistant catalyst core-shell Au@Pt/C for methanol oxidation

来源期刊:Rare Metals2012年第5期

论文作者:FENG Rongjuan, LI Min, and LIU Jiaxiang College of Materials Science and Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing , China

文章页码:451 - 456

摘    要:Au@Pt core-shell nanoparticles were successfully synthesized by a successive reduction method and then assembled on Vulcan XC-72 carbon surface. Furthermore, its composition, morphology, structure, and activity towards methanol oxidation were characterized by UV-vis spectrometry, transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Results reveal that Au@Pt/C catalyst has better activity towards methanol oxidation than the pure platinum prepared under the same conditions. When the atomic ratio of Au to Pt in the prepared Au@Pt/C catalyst is 1:2, this catalyst exhibits best electrocatalytic activity towards methanol oxidation in acidic media, and the peak current density on this catalyst is 2.0 times higher than that on Pt/C catalyst. The better catalytic activity of Au@Pt/C results from its better resistance to toxic CO than Pt/C because the CO oxidation on Au@Pt/C is 60 mV more negative than the case on Pt/C.

详情信息展示

Preparation and catalytic activity of CO-resistant catalyst core-shell Au@Pt/C for methanol oxidation

FENG Rongjuan, LI Min, and LIU Jiaxiang College of Materials Science and Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China

摘 要:Au@Pt core-shell nanoparticles were successfully synthesized by a successive reduction method and then assembled on Vulcan XC-72 carbon surface. Furthermore, its composition, morphology, structure, and activity towards methanol oxidation were characterized by UV-vis spectrometry, transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Results reveal that Au@Pt/C catalyst has better activity towards methanol oxidation than the pure platinum prepared under the same conditions. When the atomic ratio of Au to Pt in the prepared Au@Pt/C catalyst is 1:2, this catalyst exhibits best electrocatalytic activity towards methanol oxidation in acidic media, and the peak current density on this catalyst is 2.0 times higher than that on Pt/C catalyst. The better catalytic activity of Au@Pt/C results from its better resistance to toxic CO than Pt/C because the CO oxidation on Au@Pt/C is 60 mV more negative than the case on Pt/C.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号