简介概要

一种基于填充函数的神经网络全局优化算法

来源期刊:东北大学学报(自然科学版)2007年第9期

论文作者:李鸿儒 李海龙

文章页码:1247 - 1249

关键词:前向神经网络;BP算法;填充函数;全局优化;局部极小点;

摘    要:针对前向神经网络BP算法由于初始权值选择不当而陷入局部极小点这一缺陷,提出新的全局优化训练算法.首先,提出了一种新的填充函数,并证明该函数的填充性质,进而结合该新填充函数与BP算法,构造出基于填充函数的全局最优化神经网络算法.应用全局优化算法训练神经网络时,如果误差函数陷入局部极小值,该算法可以利用填充函数帮助误差函数不断地跳出局部最优,直到找到全局最优点.该新算法的最大优点是对于初始权值无依赖性,避免了BP算法易陷入局部极小值的缺点.理论分析和仿真试验结果证明了该全局优化神经网络算法的有效性和优越性.

详情信息展示

一种基于填充函数的神经网络全局优化算法

李鸿儒,李海龙

摘 要:针对前向神经网络BP算法由于初始权值选择不当而陷入局部极小点这一缺陷,提出新的全局优化训练算法.首先,提出了一种新的填充函数,并证明该函数的填充性质,进而结合该新填充函数与BP算法,构造出基于填充函数的全局最优化神经网络算法.应用全局优化算法训练神经网络时,如果误差函数陷入局部极小值,该算法可以利用填充函数帮助误差函数不断地跳出局部最优,直到找到全局最优点.该新算法的最大优点是对于初始权值无依赖性,避免了BP算法易陷入局部极小值的缺点.理论分析和仿真试验结果证明了该全局优化神经网络算法的有效性和优越性.

关键词:前向神经网络;BP算法;填充函数;全局优化;局部极小点;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号