基于粗糙集和神经网络的机械故障诊断研究
来源期刊:昆明理工大学学报(自然科学版)2011年第1期
论文作者:李爱民 施惠丰
文章页码:35 - 39
关键词:粗糙集;神经网络;机械故障诊断;
摘 要:提出了粗糙集理论与神经网络结合的机械故障诊断方法,研究了连续属性离散化的SOM方法和条件属性约简的差别矩阵方法,归纳了构建神经网络需考虑的关键问题,用一个算例验证了方法的有效性.结果表明:粗糙集能有效地约简冗余信息,简化神经网络的结构,缩短网络的训练时间,提高诊断的效率;SOM网络能将连续性输入映射成具有理想聚类结果的离散性输出,并能保持数据间的拓扑结构不变;利用差别矩阵对决策表进行约简,结果准确可靠;BP神经网络泛函逼近能力强,能快速准确地完成特征空间到故障空间的映射.
李爱民1,施惠丰2
1. 海军工程大学船舶与动力学院2. 91287部队
摘 要:提出了粗糙集理论与神经网络结合的机械故障诊断方法,研究了连续属性离散化的SOM方法和条件属性约简的差别矩阵方法,归纳了构建神经网络需考虑的关键问题,用一个算例验证了方法的有效性.结果表明:粗糙集能有效地约简冗余信息,简化神经网络的结构,缩短网络的训练时间,提高诊断的效率;SOM网络能将连续性输入映射成具有理想聚类结果的离散性输出,并能保持数据间的拓扑结构不变;利用差别矩阵对决策表进行约简,结果准确可靠;BP神经网络泛函逼近能力强,能快速准确地完成特征空间到故障空间的映射.
关键词:粗糙集;神经网络;机械故障诊断;