Selective microwave absorption in Nd3+ substituted barium ferrite composites
来源期刊:JOURNAL OF RARE EARTHS2019年第12期
论文作者:Wahyu Widanarto Siti Khaeriyah Sib Krishna Ghoshal Candra Kurniawan Mukhtar Effendi Wahyu Tri Cahyanto
文章页码:1320 - 1325
摘 要:Microwave(MW) frequency based wireless communications and electronic devices became prospective due to several ramifications.To meet this need,a series of neodymium ions(Nd3+) substituted barium ferrite composites with composition(20)BaO:(80-x)Fe2 O3:(x)Nd2 O3(0≤x≤3 mol%) was prepared at1100℃using solid-state reaction method.We evaluated the effect of various Nd3+ions contents on the surface morphology,structure,and magnetic properties of the as-synthesized barium ferrite composites.Meanwhile,microwave reflection loss,complex permittivity and permeability were determined using the transmission/reflection line method in the X-band(8—12 GHz).SEM image of the composites shows that the surface morphology consists of rough and porous microstructures.XRD patterns of the un-doped composites reveal the existence of BaFe12O19(hexagonal) and Fe21.333O32(tetragonal) crystalline phases.Furthermore,a new hexagonal crystalline phase of Ba6 Nd2 Fe4 O15 with the crystallite sizes between 15 and 67 nm is observed due to Nd3+ions substitution in the composite.The saturation magnetization of the composite containing 2 mol% of Nd3+does not exhibit any significant alteration compared to the one devoid of Nd3+.The complex relative permitivity and permeability of the achieved composites enriched in Ba6 Nd2 Fe4 O15 and BaFe2 O4 phases disclose significant MW frequency dependence.The composites also display selective MW absorption in the X-band which could be useful for diverse applications.
Wahyu Widanarto1,Siti Khaeriyah1,Sib Krishna Ghoshal2,Candra Kurniawan3,Mukhtar Effendi1,Wahyu Tri Cahyanto1
1. Department of Physics,FMIPA,Universitas Jenderal Soedirman2. Department of Physicsand Laser Centre,AMORG,Faculty of Science,Universiti Teknologi Malaysia3. Research Center for Physics,Indonesian Institute of Sciences (LIPI),Puspiptek Office Area
摘 要:Microwave(MW) frequency based wireless communications and electronic devices became prospective due to several ramifications.To meet this need,a series of neodymium ions(Nd3+) substituted barium ferrite composites with composition(20)BaO:(80-x)Fe2 O3:(x)Nd2 O3(0≤x≤3 mol%) was prepared at1100℃using solid-state reaction method.We evaluated the effect of various Nd3+ions contents on the surface morphology,structure,and magnetic properties of the as-synthesized barium ferrite composites.Meanwhile,microwave reflection loss,complex permittivity and permeability were determined using the transmission/reflection line method in the X-band(8—12 GHz).SEM image of the composites shows that the surface morphology consists of rough and porous microstructures.XRD patterns of the un-doped composites reveal the existence of BaFe12O19(hexagonal) and Fe21.333O32(tetragonal) crystalline phases.Furthermore,a new hexagonal crystalline phase of Ba6 Nd2 Fe4 O15 with the crystallite sizes between 15 and 67 nm is observed due to Nd3+ions substitution in the composite.The saturation magnetization of the composite containing 2 mol% of Nd3+does not exhibit any significant alteration compared to the one devoid of Nd3+.The complex relative permitivity and permeability of the achieved composites enriched in Ba6 Nd2 Fe4 O15 and BaFe2 O4 phases disclose significant MW frequency dependence.The composites also display selective MW absorption in the X-band which could be useful for diverse applications.
关键词: