简介概要

Boosting efficiency and stability of perovskite solar cells with nickel phthalocyanine as a low-cost hole transporting layer material

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2018年第9期

论文作者:Mustafa Haider Chao Zhen Tingting Wu Gang Liu Hui-Ming Cheng

文章页码:1474 - 1480

摘    要:The efficiency of perovskite solar cells(PSCs) has increased from around 4% to over 22% following a few years of intensive investigation. For most PSCs, organic materials such as 2,2’,7,7’-tetrakis(N,Npdimethoxyphenylamino)-9,9’-spirobifluorene(spiro-OMeTAD) are used as the hole transporting materials(HTMs), which are thermally and chemically unstable and also expensive. Here, we explored nickel phthalocyanine(NiPc) as a stable and cost-effective HTM to replace the conventionally used spiroOMeTAD. Because of its high carrier mobility and proper band alignments, we achieved a PCE of 12.1% on NiPc based planar device with short-circuit current density(Jsc) of 17.64 mAcm-2, open circuit voltage(Voc) of 0.94 V, and fill factor(FF) of 73%, outperforming the planar device based on copper phthalocyanine(CuPc) that is an outstanding representative of metal phthalocyanines(MPcs) reported. Moreover,the device with NiPc shows much improved stability compared to that based on the conventional spiroOMeTAD as a result of NiPc’s high stability. Photoluminescence(PL) and Impedance spectroscopy analysis results show that thermally deposited NiPc has good hole-extraction ability. Our results suggest that NiPc is a promising HTM for the large area, low cost and stable PSCs.

详情信息展示

Boosting efficiency and stability of perovskite solar cells with nickel phthalocyanine as a low-cost hole transporting layer material

Mustafa Haider1,2,Chao Zhen1,Tingting Wu1,3,Gang Liu1,3,Hui-Ming Cheng1,4,5

1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences2. University of Chinese Academy of Sciences3. School of Materials Science and Engineering, University of Science and Technology of China4. Low-Dimensional Material and Device Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University5. Center of Excellence in Environmental Studies, King Abdulaziz University

摘 要:The efficiency of perovskite solar cells(PSCs) has increased from around 4% to over 22% following a few years of intensive investigation. For most PSCs, organic materials such as 2,2’,7,7’-tetrakis(N,Npdimethoxyphenylamino)-9,9’-spirobifluorene(spiro-OMeTAD) are used as the hole transporting materials(HTMs), which are thermally and chemically unstable and also expensive. Here, we explored nickel phthalocyanine(NiPc) as a stable and cost-effective HTM to replace the conventionally used spiroOMeTAD. Because of its high carrier mobility and proper band alignments, we achieved a PCE of 12.1% on NiPc based planar device with short-circuit current density(Jsc) of 17.64 mAcm-2, open circuit voltage(Voc) of 0.94 V, and fill factor(FF) of 73%, outperforming the planar device based on copper phthalocyanine(CuPc) that is an outstanding representative of metal phthalocyanines(MPcs) reported. Moreover,the device with NiPc shows much improved stability compared to that based on the conventional spiroOMeTAD as a result of NiPc’s high stability. Photoluminescence(PL) and Impedance spectroscopy analysis results show that thermally deposited NiPc has good hole-extraction ability. Our results suggest that NiPc is a promising HTM for the large area, low cost and stable PSCs.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号