基于自组织神经网络的非平稳信号盲分离
来源期刊:控制与决策2011年第5期
论文作者:徐洪涛 王跃钢 邓卫强
文章页码:748 - 752
关键词:盲源分离;自组织网络;非平稳信号;自然梯度;
摘 要:针对具有二阶非平稳特性的源信号盲分离问题,提出一种基于自组织神经网络的在线盲源分离新算法.利用自组织神经网络构建一种多层盲分离网络模型,以网络输出层信号的相关性为代价函数,采用自然梯度原理对网络参数进行学习,最小化该代价函数从而实现信号分离.将多层自组织神经网络和自然梯度原理相结合,提高了分离算法的灵活性和性能.最后将该算法与其他算法进行了仿真对比,仿真结果表明该算法具有较好的收敛精度及稳定性.
徐洪涛,王跃钢,邓卫强
第二炮兵工程学院304教研室
摘 要:针对具有二阶非平稳特性的源信号盲分离问题,提出一种基于自组织神经网络的在线盲源分离新算法.利用自组织神经网络构建一种多层盲分离网络模型,以网络输出层信号的相关性为代价函数,采用自然梯度原理对网络参数进行学习,最小化该代价函数从而实现信号分离.将多层自组织神经网络和自然梯度原理相结合,提高了分离算法的灵活性和性能.最后将该算法与其他算法进行了仿真对比,仿真结果表明该算法具有较好的收敛精度及稳定性.
关键词:盲源分离;自组织网络;非平稳信号;自然梯度;