基于双目视觉的振动筛运行状态在线检测方法
来源期刊:工矿自动化2018年第6期
论文作者:杨硕 佟建楠
文章页码:90 - 95
关键词:选煤;振动筛;运动图像采集;双目视觉;多尺度角点检测;光流估计;BP神经网络分类器;
摘 要:针对现有振动筛运行状态检测方法仅能对振动筛局部运行状态进行检测,且存在精度低、时效性差等问题,提出了一种基于双目视觉的振动筛运行状态在线检测方法。首先通过双目视觉检测装置对振动筛的运动图像进行采集;然后对图像进行灰度化处理,利用多尺度Harris角点检测算法获取图像的特征点,引入图像金字塔理论改进Lucas-Kanade光流估计算法,提高图像特征点运动轨迹的在线追踪性能;最后设计BP神经网络分类器,完成对特征点运动轨迹的分析与辨识,实现对振动筛整体运行状态的检测。试验结果表明,该检测方法准确性高、时效性好,可对振动筛运动轨迹进行全方位、多角度的追踪和辨识,实现了振动筛整体运行状态的在线检测和分析。振动筛在停止、正常、疑似故障和故障4种状态下,该方法的准确率分别达到了97.917%、90.667%、96.431%和93.181%。
杨硕1,2,佟建楠3
1. 煤炭科学研究总院唐山研究院2. 天津大学电气自动化与信息工程学院3. 唐山学院土木工程学院
摘 要:针对现有振动筛运行状态检测方法仅能对振动筛局部运行状态进行检测,且存在精度低、时效性差等问题,提出了一种基于双目视觉的振动筛运行状态在线检测方法。首先通过双目视觉检测装置对振动筛的运动图像进行采集;然后对图像进行灰度化处理,利用多尺度Harris角点检测算法获取图像的特征点,引入图像金字塔理论改进Lucas-Kanade光流估计算法,提高图像特征点运动轨迹的在线追踪性能;最后设计BP神经网络分类器,完成对特征点运动轨迹的分析与辨识,实现对振动筛整体运行状态的检测。试验结果表明,该检测方法准确性高、时效性好,可对振动筛运动轨迹进行全方位、多角度的追踪和辨识,实现了振动筛整体运行状态的在线检测和分析。振动筛在停止、正常、疑似故障和故障4种状态下,该方法的准确率分别达到了97.917%、90.667%、96.431%和93.181%。
关键词:选煤;振动筛;运动图像采集;双目视觉;多尺度角点检测;光流估计;BP神经网络分类器;