基于神经网络增强学习算法的工艺任务分配方法
来源期刊:东北大学学报(自然科学版)2009年第2期
论文作者:苏莹莹 王宛山 王建荣 唐亮
文章页码:279 - 282
关键词:任务分配;工艺设计;增强学习;Q学习;神经网络;
摘 要:在任务分配问题中,如果Markov决策过程模型的状态-动作空间很大就会出现"维数灾难".针对这一问题,提出一种基于BP神经网络的增强学习策略.利用BP神经网络良好的泛化能力,存储和逼近增强学习中状态-动作对的Q值,设计了基于Q学习的最优行为选择策略和Q学习的BP神经网络模型与算法.将所提方法应用于工艺任务分配问题,经过Matlab软件仿真实验,结果证实了该方法具有良好的性能和行为逼近能力.该方法进一步提高了增强学习理论在任务分配问题中的应用价值.
苏莹莹,王宛山,王建荣,唐亮
摘 要:在任务分配问题中,如果Markov决策过程模型的状态-动作空间很大就会出现"维数灾难".针对这一问题,提出一种基于BP神经网络的增强学习策略.利用BP神经网络良好的泛化能力,存储和逼近增强学习中状态-动作对的Q值,设计了基于Q学习的最优行为选择策略和Q学习的BP神经网络模型与算法.将所提方法应用于工艺任务分配问题,经过Matlab软件仿真实验,结果证实了该方法具有良好的性能和行为逼近能力.该方法进一步提高了增强学习理论在任务分配问题中的应用价值.
关键词:任务分配;工艺设计;增强学习;Q学习;神经网络;