简介概要

Study on vacuum ultraviolet spectra of amorphous Er2O3 films on Si(001) substrates

来源期刊:JOURNAL OF RARE EARTHS2011年第9期

论文作者:朱燕艳 方泽波 徐闰 陈静 曹海静 李慧玉

文章页码:888 - 890

摘    要:Amorphous Er2O3 films have been fabricated on p-type Si(001) substrates using radio frequency magnetron sputtering technique. Vacuum ultraviolet spectra were employed to investigate the samples. An optical gap of 6.17 eV for Er2O3 films was obtained from the ab-sorption coefficient spectra. A possible reason was put forward to explain the inconsistent results about the band gap of Er2O3 in literatures. Emission spectra exhibited a strong emission band at 494 nm with the incident ultraviolet light of 249 nm. The observed high density of emission bands of Er2O3 films in the visible wavelength indicated that Er2O3 films could be used in Si solar cells for increasing conversion efficiency.

详情信息展示

Study on vacuum ultraviolet spectra of amorphous Er2O3 films on Si(001) substrates

朱燕艳1,方泽波2,徐闰3,陈静1,曹海静1,李慧玉1

1. Department of Mathematics and Physics, Shanghai University of Electric Power2. Department of Physics, Shaoxing University3. School of Materials Science and Engineering, Shanghai University

摘 要:Amorphous Er2O3 films have been fabricated on p-type Si(001) substrates using radio frequency magnetron sputtering technique. Vacuum ultraviolet spectra were employed to investigate the samples. An optical gap of 6.17 eV for Er2O3 films was obtained from the ab-sorption coefficient spectra. A possible reason was put forward to explain the inconsistent results about the band gap of Er2O3 in literatures. Emission spectra exhibited a strong emission band at 494 nm with the incident ultraviolet light of 249 nm. The observed high density of emission bands of Er2O3 films in the visible wavelength indicated that Er2O3 films could be used in Si solar cells for increasing conversion efficiency.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号