基于Adaboost加权支持向量机的热轧板带弯曲性能质量预警

来源期刊:中南大学学报(自然科学版)2017年第10期

论文作者:何飞 周鹏 梁冰 徐科

文章页码:2622 - 2628

关键词:带钢弯曲性能;质量预警;Adaboost加权支持向量机

Key words:strip bending performance; quality early warning; Adaboost-weighted support vector machine

摘    要:针对热轧带钢弯曲性能质量监控与预警过程中因正常样本与异常样本的比例严重失衡而导致质量监控过程中预警不灵敏、异常检出率较低的问题,从数据层面和算法层面研究不平衡样本数据的质量预警问题,提出基于Adaboost加权支持向量机的热轧带钢弯曲性能质量预警方法。研究结果表明:采用该方法所得平均异常检出率提高至88.58%,误判率为0.63%。该方法具有较强的异常检出能力,能够为热轧板带生产过程的质量预警提供保障。

Abstract: Due to the data imbalance between normal and abnormal samples, the quality warning is not sensitive and the detection rate is low in the quality monitoring of strip bending performance. To solve this problem, different imbalance solutions to the abnormal detection from data level and algorithm level were studied. The quality warning method based on the Adaboost-weighted support vector machine method was proposed. The results show that the average value of fault detection rate is improved to 88.58%, and the average value of false alarm rate is reduced to 0.63%. The proposed method produces satisfying results in fault detection, which provides support for quality warning in hot rolling strip process.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号