简介概要

Yellow upconversion luminescence in Ho3+/Yb3+ co-doped Gd2Mo3O9 phosphor

来源期刊:Journal of Rare Earths2013年第8期

论文作者:孙家跃 薛兵 孙广超 崔殿鹏

文章页码:741 - 744

摘    要:The strong yellow upconversion (UC) light emission was observed in Ho3+/Yb3+ co-doped Gd2Mo3O9 phosphor under the excitation of 980 nm diode laser. The phosphors were synthesized by the traditional solid-state reaction method. The structures of the samples were characterized by X-ray diffraction (XRD). Under 980 nm excitation, Ho3+/Yb3+ co-doped Gd2Mo3O9 exhibited strong yellow UC emission based on the green emission near 541 nm generated by 5F4 , 5S2 → 5I8 transition and the strong red emission around 660 nm generated by 5F5 → 5I8 transition, which assigned to the intra-4f transitions of Ho3+ ions. The doping concentrations of Ho3+ and Yb3+ were determined to be 0.01 mol Ho3+ and 0.2 mol Yb3+ for the strongest yellow emission. Then the dependence of UC emission intensity on excitation power density showed that the green and red UC emissions were involved in two-photon process. The possible UC mechanisms for the strong yellow emission were also investigated. The result indicated that this material was a promising candidate for the application in the yellow display field.

详情信息展示

Yellow upconversion luminescence in Ho3+/Yb3+ co-doped Gd2Mo3O9 phosphor

孙家跃,薛兵,孙广超,崔殿鹏

School of Science, Beijing Technology and Business University

摘 要:The strong yellow upconversion (UC) light emission was observed in Ho3+/Yb3+ co-doped Gd2Mo3O9 phosphor under the excitation of 980 nm diode laser. The phosphors were synthesized by the traditional solid-state reaction method. The structures of the samples were characterized by X-ray diffraction (XRD). Under 980 nm excitation, Ho3+/Yb3+ co-doped Gd2Mo3O9 exhibited strong yellow UC emission based on the green emission near 541 nm generated by 5F4 , 5S2 → 5I8 transition and the strong red emission around 660 nm generated by 5F5 → 5I8 transition, which assigned to the intra-4f transitions of Ho3+ ions. The doping concentrations of Ho3+ and Yb3+ were determined to be 0.01 mol Ho3+ and 0.2 mol Yb3+ for the strongest yellow emission. Then the dependence of UC emission intensity on excitation power density showed that the green and red UC emissions were involved in two-photon process. The possible UC mechanisms for the strong yellow emission were also investigated. The result indicated that this material was a promising candidate for the application in the yellow display field.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号