简介概要

Effect of erbium on microstructures and properties of Mg-Al intermetallic

来源期刊:Journal of Rare Earths2014年第11期

论文作者:李永刚 卫英慧 侯利锋 郭春丽 韩鹏举

文章页码:1064 - 1072

摘    要:The effect of the rare earth element Er on the microstructures and properties of Mg-Al intermetallic were studied in this experiment. Metallographic and X-ray diffraction(XRD) results showed that the microstructures of Mg-Al-Er alloys varied with Er content. The Mg-44Al-0.5Er and Mg-43.8Al-1.0Er alloys were both composed of Mg17Al12 matrix and Al3 Er phase, whereas Mg-43Al-3.0Er and Mg-42Al-5.0Er were composed of Mg17Al12 matrix, Al3 Er phase, and Mg-Mg17Al12 eutectic. The Mg-42Al-5.0Er alloy showed the highest microhardness, and the values remained nearly stable as Er content increased from 1.0 wt.% to 5.0 wt.%. The dispersed second phase Al3 Er caused the grain refinement of the Mg-Al-Er alloy, which was the main reason for the improvement in microhardness. The corrosion resistance of the Er-containing alloys initially increased and then decreased with increasing Er content. All the Er-containing alloys had the ability to suppress hydrogen evolution, which was the main reason for the higher corrosion resistance of the modified alloys than that of the Mg-44.3Al alloy. Considering the higher hardness and dispersity of the Al3 Er phase, Mg-43.8Al-1.0Er exhibited higher wear resistance than the as-cast Mg-44.3Al alloy.

详情信息展示

Effect of erbium on microstructures and properties of Mg-Al intermetallic

李永刚1,2,卫英慧1,3,侯利锋1,郭春丽1,韩鹏举1

1. College of Materials Science and Engineering, Taiyuan University of Technology2. College of Mechanical Engineering, Taiyuan University of Technology

摘 要:The effect of the rare earth element Er on the microstructures and properties of Mg-Al intermetallic were studied in this experiment. Metallographic and X-ray diffraction(XRD) results showed that the microstructures of Mg-Al-Er alloys varied with Er content. The Mg-44Al-0.5Er and Mg-43.8Al-1.0Er alloys were both composed of Mg17Al12 matrix and Al3 Er phase, whereas Mg-43Al-3.0Er and Mg-42Al-5.0Er were composed of Mg17Al12 matrix, Al3 Er phase, and Mg-Mg17Al12 eutectic. The Mg-42Al-5.0Er alloy showed the highest microhardness, and the values remained nearly stable as Er content increased from 1.0 wt.% to 5.0 wt.%. The dispersed second phase Al3 Er caused the grain refinement of the Mg-Al-Er alloy, which was the main reason for the improvement in microhardness. The corrosion resistance of the Er-containing alloys initially increased and then decreased with increasing Er content. All the Er-containing alloys had the ability to suppress hydrogen evolution, which was the main reason for the higher corrosion resistance of the modified alloys than that of the Mg-44.3Al alloy. Considering the higher hardness and dispersity of the Al3 Er phase, Mg-43.8Al-1.0Er exhibited higher wear resistance than the as-cast Mg-44.3Al alloy.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号