基于Faster R-CNN的煤岩识别与煤层定位测量
来源期刊:矿山机械2019年第8期
论文作者:华同兴 邢存恩 赵亮
文章页码:4 - 9
关键词:煤岩识别;机器深度学习;Faster R-CNN;理想针孔线性成像模型;
摘 要:传统机器学习的煤岩识别技术大多数采用的是手工设计图像特征,并结合滑动窗口的方式对煤岩图像进行特征提取,再经过分类器进行分类和识别,存在图像特征设计难度大、耗时长、泛化性差等缺点。针对传统机器学习的这些缺点,采用了一种基于机器深度学习Faster R-CNN的煤岩识别方法。首先利用采煤机上的监控摄像机现场采集煤岩图片数据集,将图片输入到VGG16卷积神经网络,对煤岩图像特征进行提取,将提取出来的特征图经过区域建议网络(Region Proposal Network),对图像上的煤岩进行初步定位与分类,最后经过R-CNN网络精确定位分类,输出煤层边界点的像素坐标值。解算出监控摄像机内外置参数,结合理想针孔线性成像模型,将图片中所定位到的煤层边界点(煤层角点)的像素坐标值转化成矿井测量坐标值,为采煤机自动调整滚筒空间位置提供数据依据。
华同兴,邢存恩,赵亮
太原理工大学矿业工程学院
摘 要:传统机器学习的煤岩识别技术大多数采用的是手工设计图像特征,并结合滑动窗口的方式对煤岩图像进行特征提取,再经过分类器进行分类和识别,存在图像特征设计难度大、耗时长、泛化性差等缺点。针对传统机器学习的这些缺点,采用了一种基于机器深度学习Faster R-CNN的煤岩识别方法。首先利用采煤机上的监控摄像机现场采集煤岩图片数据集,将图片输入到VGG16卷积神经网络,对煤岩图像特征进行提取,将提取出来的特征图经过区域建议网络(Region Proposal Network),对图像上的煤岩进行初步定位与分类,最后经过R-CNN网络精确定位分类,输出煤层边界点的像素坐标值。解算出监控摄像机内外置参数,结合理想针孔线性成像模型,将图片中所定位到的煤层边界点(煤层角点)的像素坐标值转化成矿井测量坐标值,为采煤机自动调整滚筒空间位置提供数据依据。
关键词:煤岩识别;机器深度学习;Faster R-CNN;理想针孔线性成像模型;