简介概要

基于Faster R-CNN的煤岩识别与煤层定位测量

来源期刊:矿山机械2019年第8期

论文作者:华同兴 邢存恩 赵亮

文章页码:4 - 9

关键词:煤岩识别;机器深度学习;Faster R-CNN;理想针孔线性成像模型;

摘    要:传统机器学习的煤岩识别技术大多数采用的是手工设计图像特征,并结合滑动窗口的方式对煤岩图像进行特征提取,再经过分类器进行分类和识别,存在图像特征设计难度大、耗时长、泛化性差等缺点。针对传统机器学习的这些缺点,采用了一种基于机器深度学习Faster R-CNN的煤岩识别方法。首先利用采煤机上的监控摄像机现场采集煤岩图片数据集,将图片输入到VGG16卷积神经网络,对煤岩图像特征进行提取,将提取出来的特征图经过区域建议网络(Region Proposal Network),对图像上的煤岩进行初步定位与分类,最后经过R-CNN网络精确定位分类,输出煤层边界点的像素坐标值。解算出监控摄像机内外置参数,结合理想针孔线性成像模型,将图片中所定位到的煤层边界点(煤层角点)的像素坐标值转化成矿井测量坐标值,为采煤机自动调整滚筒空间位置提供数据依据。

详情信息展示

基于Faster R-CNN的煤岩识别与煤层定位测量

华同兴,邢存恩,赵亮

太原理工大学矿业工程学院

摘 要:传统机器学习的煤岩识别技术大多数采用的是手工设计图像特征,并结合滑动窗口的方式对煤岩图像进行特征提取,再经过分类器进行分类和识别,存在图像特征设计难度大、耗时长、泛化性差等缺点。针对传统机器学习的这些缺点,采用了一种基于机器深度学习Faster R-CNN的煤岩识别方法。首先利用采煤机上的监控摄像机现场采集煤岩图片数据集,将图片输入到VGG16卷积神经网络,对煤岩图像特征进行提取,将提取出来的特征图经过区域建议网络(Region Proposal Network),对图像上的煤岩进行初步定位与分类,最后经过R-CNN网络精确定位分类,输出煤层边界点的像素坐标值。解算出监控摄像机内外置参数,结合理想针孔线性成像模型,将图片中所定位到的煤层边界点(煤层角点)的像素坐标值转化成矿井测量坐标值,为采煤机自动调整滚筒空间位置提供数据依据。

关键词:煤岩识别;机器深度学习;Faster R-CNN;理想针孔线性成像模型;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号