基于深度学习的多维特征微博情感分析

来源期刊:中南大学学报(自然科学版)2018年第5期

论文作者:张瑞 金志刚 胡博宏

文章页码:1135 - 1141

关键词:情感分析;卷积神经网络;微博短文本;表情字符

Key words:sentiment analysis; convolutional neural networks; Weibo short text; emoticons

摘    要:提出1种基于卷积神经网络的多维特征微博情感分析新机制;利用词向量计算文本的语义特征,结合基于表情字符的情感特征,利用卷积神经网络挖掘特征集合与情感标签间的深层次关联,训练情感分类器;结合微博文本的语义和情感特征,同时利用卷积神经网络的抽象特征提取能力,进而改善情感分析性能。研究结果表明:引入表情字符的情感特征模型可使情感分析准确率提高2.62%;相比基于词典的机器学习模型,新机制将情感分析准确率与F度量分别提升21.29%和19.20%。

Abstract: A new mechanism of Weibo sentiment analysis based on convolutional neural networks with multi- dimensional features was proposed. The proposed mechanism combines semantic features from word vectors with sentiment features from emoticons, in which convolutional neural networks was used to mine deep correlation between features and labels. The performance of Weibo sentiment analysis was improved through mining multi-dimensional features and utilizing abstract features extraction ability of convolutional neural networks. The results show that the accuracy of sentiment analysis model based on emoticons increases by 2.62%. The accuracy and F measure increase by 21.29% and 19.20% respectively compared with that of machine learning model based on lexicon.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号