简介概要

Two-way shape memory effect and alternating current driving characteristics of a TiNi alloy spring

来源期刊:Rare Metals2004年第3期

论文作者:WANG Zhiguo and ZU Xiaotao Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu , China

文章页码:250 - 254

摘    要:<正> Two-way shape memory effect (TWSME) was induced into the TiNi shape memory alloys (SMAs) spring by thermomechanical training after annealing treatment, which has promising application in micro-actuating fields. The TWSME spring can contract upon heating and extend upon cooling. The results show that there is an increase of the recovery ratio up to a maximum TWSME of 45%. During the training procedure, transformation temperatures and hysteresis were measured by different scanning calorimetry (DSC). The results show that As (reverse transformation start temperature) and Af (reverse transformation finish temperature) shift to lower temperature after training. The intervals of Af-As and Ms-Mf (Ms and Mf are the martensite start and finish temperatures, respectively) increase and the heat of transformation decreases after training. The electrothermal driving characteristics of the TWSME springs were also investigated with alternating current density of 3.2-14.7 A/mm2. It is found that the time respo

详情信息展示

Two-way shape memory effect and alternating current driving characteristics of a TiNi alloy spring

WANG Zhiguo and ZU Xiaotao Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China

摘 要:<正> Two-way shape memory effect (TWSME) was induced into the TiNi shape memory alloys (SMAs) spring by thermomechanical training after annealing treatment, which has promising application in micro-actuating fields. The TWSME spring can contract upon heating and extend upon cooling. The results show that there is an increase of the recovery ratio up to a maximum TWSME of 45%. During the training procedure, transformation temperatures and hysteresis were measured by different scanning calorimetry (DSC). The results show that As (reverse transformation start temperature) and Af (reverse transformation finish temperature) shift to lower temperature after training. The intervals of Af-As and Ms-Mf (Ms and Mf are the martensite start and finish temperatures, respectively) increase and the heat of transformation decreases after training. The electrothermal driving characteristics of the TWSME springs were also investigated with alternating current density of 3.2-14.7 A/mm2. It is found that the time respo

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号