简介概要

基于协同过滤的连续黑箱优化问题元启发算法选择

来源期刊:控制与决策2020年第6期

论文作者:张永韡 汪镭

文章页码:1297 - 1306

关键词:算法选择;连续优化;黑箱优化;协同过滤;元启发;推荐系统;

摘    要:算法选择(AS)问题旨在为给定问题在算法集合中选择最佳算法.随着优化算法的不断提出,算法选择问题是优化领域亟待解决的问题.提出基于聚类的元启发算法五星评价体系,将算法性能指标映射至整数评价以减小评价空间.通过测试24种常见优化算法与4种最新CEC大赛优胜算法在219种、3 000多个标准测试问题上的性能,得到评价矩阵.将评价矩阵作为训练数据,使用协同过滤(CF)算法建立算法评价的预测模型.使用该模型预测算法集内的所有算法在新问题上的评价,结果显示所提出方法预测精度较高,超过90%的预测最佳算法为最终可行算法.敏感性分析显示,该方法在先验信息有限的情况下仍可以保持较高的预测精度.

详情信息展示

基于协同过滤的连续黑箱优化问题元启发算法选择

张永韡1,汪镭2

1. 江苏科技大学电子与信息学院2. 同济大学电子与信息工程学院

摘 要:算法选择(AS)问题旨在为给定问题在算法集合中选择最佳算法.随着优化算法的不断提出,算法选择问题是优化领域亟待解决的问题.提出基于聚类的元启发算法五星评价体系,将算法性能指标映射至整数评价以减小评价空间.通过测试24种常见优化算法与4种最新CEC大赛优胜算法在219种、3 000多个标准测试问题上的性能,得到评价矩阵.将评价矩阵作为训练数据,使用协同过滤(CF)算法建立算法评价的预测模型.使用该模型预测算法集内的所有算法在新问题上的评价,结果显示所提出方法预测精度较高,超过90%的预测最佳算法为最终可行算法.敏感性分析显示,该方法在先验信息有限的情况下仍可以保持较高的预测精度.

关键词:算法选择;连续优化;黑箱优化;协同过滤;元启发;推荐系统;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号