Thermodynamics and Kinetics of Calcium Sulphoaluminate
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2011年第4期
论文作者:郭惠玲 谢峻林
文章页码:719 - 722
摘 要:The formation process of calcium suphoaluminate(C4A3S) was investigated by the X-ray diffraction technique and then the thermodynamics was analyzed, finally the kinetics of which was studied by SC-132. XRD results show that the formation of C4A3S is accomplished in three different kinds of ways: one is by solid reaction of Ca (OH)2/ CaO, Al2O3 and CaSO4, other two ways are through such interstitial products as CaO·Al2O3 and CaO·2Al2O3. The formation thermodynamics shows that C4A3S begins to form at 900 ℃-1 000 ℃ and increases as temperature rising; the quantity of reaches the highest at 1 300 ℃-1 350 ℃ and then falls at >1350℃. Kinetics study shows that the formation rate of C4A3S can be described as first-order kinetics at high temperature, and it belongs to the random nucleation growth mechanism. The apparent activation energy is 456.37 kJ·mol-1 and pre-exponential factor is 1.545×1012.
郭惠玲,谢峻林
Key Laboratory for Silicate Materials Science and Engineering of Ministry of Education, Wuhan University of Technology
摘 要:The formation process of calcium suphoaluminate(C4A3S) was investigated by the X-ray diffraction technique and then the thermodynamics was analyzed, finally the kinetics of which was studied by SC-132. XRD results show that the formation of C4A3S is accomplished in three different kinds of ways: one is by solid reaction of Ca (OH)2/ CaO, Al2O3 and CaSO4, other two ways are through such interstitial products as CaO·Al2O3 and CaO·2Al2O3. The formation thermodynamics shows that C4A3S begins to form at 900 ℃-1 000 ℃ and increases as temperature rising; the quantity of reaches the highest at 1 300 ℃-1 350 ℃ and then falls at >1350℃. Kinetics study shows that the formation rate of C4A3S can be described as first-order kinetics at high temperature, and it belongs to the random nucleation growth mechanism. The apparent activation energy is 456.37 kJ·mol-1 and pre-exponential factor is 1.545×1012.
关键词: