碾压混凝土的动态力学特性分析及损伤演化本构模型建立

来源期刊:中南大学学报(自然科学版)2019年第1期

论文作者:宋冉 张社荣 王超 魏培勇

文章页码:130 - 139

关键词:碾压混凝土;分离式霍普金森压杆实验;动态力学特性;统计损伤演化模型

Key words:roller-compacted concrete; split Hopkinson pressure bar experiment; dynamic mechanical properties; statistical damage evolution model

摘    要:为了深入认识碾压混凝土的动态力学特性,参考实际水工混凝土大坝工程制备试样,借助改进的分离式霍普金森压杆(SHPB)装置测定碾压混凝土的动态性能,得到不同级配碾压混凝土试样在动态冲击荷载下(应变率为25~80 s-1)的应力-应变曲线,分析其强度和变形特性、破坏形态和吸能特性,并建立基于Weibull分布的损伤演化本构模型。研究结果表明:碾压混凝土强度较低,加载过程中应力发展不充分,其应力-应变曲线呈现1个明显的平台阶段;碾压混凝土的峰值应力、峰值应变、单位体积吸能率均随加载应变率的提高而增大,并满足二次多项式关系;建立的统计损伤演化模型可以有效地描述碾压混凝土在动态冲击荷载下的力学行为,理论结果与实验结果吻合较好。

Abstract: In order to explore the dynamic mechanical properties of roller-compacted concrete (RCC) comprehensively, actual hydraulic concrete dam project was referred to prepare specimen, and the dynamic mechanical properties of RCC were measured via improved split Hopkinson pressure bar (SHPB) technique. The stress-strain curves of two kinds of coarse grade specimens under dynamic loading (strain rate ranges from 20 s-1 to 80 s-1) were obtained. Then the strength and deformation characteristics, failure mode and energy absorption property were analyzed and a statistical damage constitutive model based on Weibull distribution was established. The results show that since RCC has low strength and the stress develops inadequately during experiment, the stress-strain curve shows an obvious plateau stage; the relationships between the peak stress, the peak strain, the energy absorption property and the loading strain rate are in accordance with two-polynomial relation, and all of them increase with the increment of the strain rate; the statistical damage constitutive model can well describe the mechanical behavior under dynamic impact loading. Theoretical results are in good agreement with experimental data.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号