简介概要

Influence of neodymium addition on microstructure,tensile properties and fracture behavior of cast Al-Mg2Si metal matrix composite

来源期刊:Journal of Rare Earths2013年第3期

论文作者:武晓峰 张广安 伍复发 王喆

文章页码:307 - 312

摘    要:The influence of Nd on the microstructures,tensile properties and fracture behavior of cast Al-18 wt.%Mg2Si in situ metal matrix composite was investigated.Experimental results showed that,after introducing a proper amount of Nd,both primary and eutectic Mg2Si in the Al-18 wt.%Mg2Si composite were well modified.The morphology of primary Mg2Si was changed from irregular or dendritic to polyhedral shape,and its average particle size was significantly decreased from 47.5 to 13.0 μm.Moreover,the morphology of the eutectic Mg2Si phase was altered from flake-like to a thin laminar,short fibrous or dot-like structure.Tensile tests revealed that Nd addition improved the tensile strength and ductility of the material.Compared with those of unmodified composite,the ultimate tensile strength and percentage elongation with 0.5% Nd were increased by 32.4% and 200%,respectively.At the same time,Nd addition changed the fracture behavior from brittle to ductile.

详情信息展示

Influence of neodymium addition on microstructure,tensile properties and fracture behavior of cast Al-Mg2Si metal matrix composite

武晓峰,张广安,伍复发,王喆

School of Materials Science and Engineering,Liaoning University of Technology

摘 要:The influence of Nd on the microstructures,tensile properties and fracture behavior of cast Al-18 wt.%Mg2Si in situ metal matrix composite was investigated.Experimental results showed that,after introducing a proper amount of Nd,both primary and eutectic Mg2Si in the Al-18 wt.%Mg2Si composite were well modified.The morphology of primary Mg2Si was changed from irregular or dendritic to polyhedral shape,and its average particle size was significantly decreased from 47.5 to 13.0 μm.Moreover,the morphology of the eutectic Mg2Si phase was altered from flake-like to a thin laminar,short fibrous or dot-like structure.Tensile tests revealed that Nd addition improved the tensile strength and ductility of the material.Compared with those of unmodified composite,the ultimate tensile strength and percentage elongation with 0.5% Nd were increased by 32.4% and 200%,respectively.At the same time,Nd addition changed the fracture behavior from brittle to ductile.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号