Experimental Study of Post-heated Steel Reinforced Recycled Concrete Columns Repaired with CFRP
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2018年第4期
论文作者:贾璞 董江峰 YUAN Shucheng 王清远
文章页码:901 - 907
摘 要:The mechanical and thermal properties of steel reinforced concrete columns with CFRP reinforcement were examined after exposure to a high temperature of 500℃. The concrete made with normal and recycled coarse aggregate(RCA) was fabricated and three different RCA replacement ratios(0, 50%, and 100%) were investigated. The fatigue properties of steel reinforced concrete with RCA and CFRP reinforcement were tested for two million cycles at a frequency of 2.5 Hz. The test results show that the failure of strengthened specimens is mainly caused by rupture of CFRP jacket and buckling of inner section steel reinforcement. However, for the unstrengthened specimen, both of inner steel buckling and core concrete cracking are the main contributors to the damage. The load-bearing capacity, deformation and energy dissipation of the specimens during the fatigue test could be strengthened greatly by CFRP reinforcement. However, the CFRP reinforcement has little influence on the improvement of the stiffness of the specimens, which may be caused by a plastic damage accumulation during the early cycles of fatigue tests. Finally, a static test was conducted on the postfatigue specimens, the results showed that a large decrease in stiffness was observed for the specimens subjected to high temperature and fatigue, and the fatigue loading had a higher influence on the specimens than the high temperature.
贾璞1,2,董江峰3,YUAN Shucheng3,王清远4
1. Institute for Disaster Management and Reconstruction, Sichuan University2. Failure Mechanics and Engineering Disaster Prevention and Mitigation Key Laboratory of Sichuan Province, Science & Technology Department of Sichuan Province3. School of Architecture and Environment, Sichuan University4. School of Mechanical Engineering, Chengdu University
摘 要:The mechanical and thermal properties of steel reinforced concrete columns with CFRP reinforcement were examined after exposure to a high temperature of 500℃. The concrete made with normal and recycled coarse aggregate(RCA) was fabricated and three different RCA replacement ratios(0, 50%, and 100%) were investigated. The fatigue properties of steel reinforced concrete with RCA and CFRP reinforcement were tested for two million cycles at a frequency of 2.5 Hz. The test results show that the failure of strengthened specimens is mainly caused by rupture of CFRP jacket and buckling of inner section steel reinforcement. However, for the unstrengthened specimen, both of inner steel buckling and core concrete cracking are the main contributors to the damage. The load-bearing capacity, deformation and energy dissipation of the specimens during the fatigue test could be strengthened greatly by CFRP reinforcement. However, the CFRP reinforcement has little influence on the improvement of the stiffness of the specimens, which may be caused by a plastic damage accumulation during the early cycles of fatigue tests. Finally, a static test was conducted on the postfatigue specimens, the results showed that a large decrease in stiffness was observed for the specimens subjected to high temperature and fatigue, and the fatigue loading had a higher influence on the specimens than the high temperature.
关键词: