锻造方式对ZK21镁合金显微组织和力学性能的影响

来源期刊:中南大学学报(自然科学版)2015年第2期

论文作者:吴远志 严红革 朱素琴 刘先兰 刘安民 张蓉

文章页码:444 - 452

关键词:ZK21镁合金;高应变速率锻造;锻造方式;显微组织;力学性能

Key words:ZK21 magnesium; high strain rate forging; forging technique; microstructure; mechanical properties

摘    要:采用空气锤对ZK21合金进行高应变速率锻造成形,对比研究单向、双向和三向锻造合金的显微组织和力学性能。研究结果表明:锻造成形时通过改变载荷方向可以提高合金所能承受的累积应变,从而获得良好的晶粒细化效果和优异的综合力学性能。双向锻造时,再结晶机制主要为孪生诱发动态再结晶,合金最终锻造组织为平均晶粒粒径约为0.3 μm的超细晶粒组织;而三向锻造时,再结晶机制主要为旋转动态再结晶和孪生诱发动态再结晶,合金最终锻造组织为平均晶粒粒径为15 μm的蜂窝状粗大再结晶组织和平均晶粒粒径约为0.3 μm的岛状细小再结晶组织。累积应变为2.64时,双向锻造合金的抗拉强度、屈服强度和伸长率分别为355.7 MPa,295 MPa和16.6%,三向铸造合金的抗拉强度、屈服强度和伸长率分别为341.6 MPa,270.7 MPa和25.1%。

Abstract: The high strain rate forging of ZK21 magnesium alloy was conducted on the pneumatic power hammer, and the microstructure and mechanical properties of the forged alloys processed by different forging techniques including uniaxial forging (UF), biaxial forging (BF) and triaxial forging (TF) were investigated. The results show that higher strain should be accumulated on ZK21 alloy by alternating the loading direction, which consequently results in extensive grain refinement and excellence mechanical properties. Twinning induced dynamic recrystallization (TDRX) is the main DRX mechanism of BF, which consequently results in ultrafine grains with average grain size of 0.3 μm. However, both rotation DRX (RDRX) and TDRX are responsible for the DRX during TF, which consequently results in a novel mixed structure of honeycombe-like coarse DRX grains with average grain size of 15 μm and island-like ultrafine grains with average grain size of 0.3 μm. An excellent combination of mechanical property is achieved in biaxial forged and triaxial forged alloys at accumulated strain of 2.64. The ultimate tensile strength (UTS), yield strength (YS) and elongation of biaxial forged alloy are 355.7 MPa, 295 MPa and 16.6%, respectively. The VTS, YS and elongation of triaxial forged alloy are 341.6 MPa, 270.7 MPa and 25.1%, respectively.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号