基于粒子滤波器的移动机器人惯导传感器故障诊断

来源期刊:中南大学学报(自然科学版)2005年第4期

论文作者:段琢华 蔡自兴 于金霞 邹小兵

文章页码:642 - 647

关键词:移动机器人;故障检测;故障诊断;粒子滤波器

Key words:mobile robot; fault detection; fault diagnosis; particle filter

摘    要:提出一种粒子滤波器方法用于诊断移动机器人惯性导航系统传感器故障。该方法将基于规则的推理与多粒子滤波器结合,利用规则推理确定机器人运动状态,每一种运动状态用一个粒子滤波器监视。该方法有效地解决了单个粒子滤波器难以表示复杂逻辑的问题,降低了每个粒子滤波器的粒子数,从而提高了诊断效率和精度。对移动机器人在5种平面运动状态下(静止、直线运动、转动等)的8种工作模式(包括1种正常工作模式和7种故障模式)进行监视的仿真结果表明,采用所提出的方法可以有效地识别惯导系统的1个或多个硬故障。

Abstract: A particle filter-based approach for fault diagnosis of inertial sensor of wheeled mobile robots was proposed, in which the rule-based inference and multiple particle filters were integrated. The rule-based inference method was employed to determine the movement states of the robot. Each movement state was monitored by a particle filter. This approach overcomes some shortcomings of particle filter such as weak logic inference capability, decreases particle number, increases efficiency and accuracy of each particle filter. The results of monitoring 8 kinds of operation mode of inertial navigation system (INS) of 5 kinds of movement states of mobile robot in a plane show that the approach presented can diagnose one or more hard faults of intertial navigation system sensors of mobile robots.

基金信息:国家自然科学基金重点项目

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号