简介概要

烧结矿FeO含量预报系统开发与应用

来源期刊:钢铁2006年第9期

论文作者:蒋大军

关键词:烧结矿FeO; 神经网络; 网络训练; 预报;

摘    要:针对FeO含量控制复杂与难度大的实际情况,开发了神经网路预报系统.采用改进后的4层前向神经网络,进行多因素输入建模,输出采用主因线性相关与次因非线性相关叠加,预报现场烧结矿FeO含量.网络结构设计精度高、泛化能力强.训练方差为0.01508846,用训练样本集测试FeO含量输出,检验的绝对平均误差为0.135 665,命中率为97.78%.采用训练后网络预报,绝对平均误差为0.189 226,命中率为91.14%.

详情信息展示

烧结矿FeO含量预报系统开发与应用

蒋大军1

(1.攀枝花钢铁集团公司炼铁厂,四川,攀枝花,617024)

摘要:针对FeO含量控制复杂与难度大的实际情况,开发了神经网路预报系统.采用改进后的4层前向神经网络,进行多因素输入建模,输出采用主因线性相关与次因非线性相关叠加,预报现场烧结矿FeO含量.网络结构设计精度高、泛化能力强.训练方差为0.01508846,用训练样本集测试FeO含量输出,检验的绝对平均误差为0.135 665,命中率为97.78%.采用训练后网络预报,绝对平均误差为0.189 226,命中率为91.14%.

关键词:烧结矿FeO; 神经网络; 网络训练; 预报;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号