简介概要

CREEP CRACK GROWTH BEHAVIOR OF ALLOY 718 DURING HIGH TEMPERATURE EXPOSURE

来源期刊:Acta Metallurgica Sinica2005年第2期

论文作者:Y.P.Zeng X.S.Xie J.X.Dong M.C.Zhang

Key words:Alloy 718; creep crack growth rate; α-Cr phase;

Abstract: Alloy 718 is a precipitation strengthened nickel-based superalloy based on the precipitation ofγ"-Ni3Nb (DO22 structure) and γ-Ni3(Al, Ti) (Ll2 structure) phases. Creep crack growth rate(CCGR) was investigated after high temperature exposure at 593, 650 and 677℃ for 2000h inAlloy 718. In addition to the coalescence of γ'/ γ" and the amount increasing of δ phase, theexistence of a bcc chromium enriched α-Cr phase was observed by SEM, and the weight fraction of α-Cr and other phases were determined by chemical phase analysis methods. The CCGR behavior and regulation have been analyzed by means of strength and structure analysis approaches. The experimental results show higher the exposure temperature and longer the ex posure time, lower the CCGR. This is probably attributed to the interaction of material softening and brittling due to complex structure changes during high temperature exposure. Therefore,despite α-Cr phase formation and amount enhancement were run in this test range. It seems to us a srnall amount of α-Cr will be not harmful for creep crack propagation resistance, which is critical for disk application in aircraft and land-based gas turbine.

详情信息展示

CREEP CRACK GROWTH BEHAVIOR OF ALLOY 718 DURING HIGH TEMPERATURE EXPOSURE

Y.P.Zeng1,X.S.Xie1,J.X.Dong1,M.C.Zhang1

(1.Department of Material Science, University of Science and Technology Beijing, Beijing 100083,China)

Abstract:Alloy 718 is a precipitation strengthened nickel-based superalloy based on the precipitation ofγ"-Ni3Nb (DO22 structure) and γ-Ni3(Al, Ti) (Ll2 structure) phases. Creep crack growth rate(CCGR) was investigated after high temperature exposure at 593, 650 and 677℃ for 2000h inAlloy 718. In addition to the coalescence of γ''/ γ" and the amount increasing of δ phase, theexistence of a bcc chromium enriched α-Cr phase was observed by SEM, and the weight fraction of α-Cr and other phases were determined by chemical phase analysis methods. The CCGR behavior and regulation have been analyzed by means of strength and structure analysis approaches. The experimental results show higher the exposure temperature and longer the ex posure time, lower the CCGR. This is probably attributed to the interaction of material softening and brittling due to complex structure changes during high temperature exposure. Therefore,despite α-Cr phase formation and amount enhancement were run in this test range. It seems to us a srnall amount of α-Cr will be not harmful for creep crack propagation resistance, which is critical for disk application in aircraft and land-based gas turbine.

Key words:Alloy 718; creep crack growth rate; α-Cr phase;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号