简介概要

Pack Aluminide Coatings Formed at 650 ℃ for Enhancing Oxidation Resistance of Low Alloy Steels

来源期刊:材料热处理学报2004年第5期

论文作者:S. R. Rose P. K. Datta Z. D. Xiang

关键词:Iron aluminide coatings; pack cementation; oxidation resistance;

摘    要:This study aims to investigate the feasibility of forming iron aluminide coatings on a commercial 9Cr-lMo (wt.%)alloy steel by pack cementation at 650 ℃ in an attempt to improve its high temperature oxidation resistance. Pack powders containing Al, Al2O3 and a series of halide salts were used to carry out the coating deposition experiments, which enabled identification of the most suitable activator for the pack aluminising process at the intended temperature. The effect of pack aluminium content on the growth kinetics and microstructure of the coatings was then studied by keeping deposition conditions and pack activator content constant while increasing the pack aluminium content from 1.4 wt.% to 6 wt.%. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were used to analyse the phases and microstructures of the coatings formed and to determine depth profiles of coating elements in the coating layer. Oxidation resistance of the coating was studied at 650 ℃ in air by intermittent weight measurement at room temperature. It was observed that the coating could substantially enhance the oxidation resistance of the steel under these testing conditions, which was attributed to the capability of the iron aluminide phases to form alumina scale on the coating surface through preferential Al oxidation.

详情信息展示

Pack Aluminide Coatings Formed at 650 ℃ for Enhancing Oxidation Resistance of Low Alloy Steels

S. R. Rose1,P. K. Datta1,Z. D. Xiang1

(1.Advanced Materials Research Institute, School of Engineering and Technology, Northumbria University, Ellison Building, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK)

摘要:This study aims to investigate the feasibility of forming iron aluminide coatings on a commercial 9Cr-lMo (wt.%)alloy steel by pack cementation at 650 ℃ in an attempt to improve its high temperature oxidation resistance. Pack powders containing Al, Al2O3 and a series of halide salts were used to carry out the coating deposition experiments, which enabled identification of the most suitable activator for the pack aluminising process at the intended temperature. The effect of pack aluminium content on the growth kinetics and microstructure of the coatings was then studied by keeping deposition conditions and pack activator content constant while increasing the pack aluminium content from 1.4 wt.% to 6 wt.%. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were used to analyse the phases and microstructures of the coatings formed and to determine depth profiles of coating elements in the coating layer. Oxidation resistance of the coating was studied at 650 ℃ in air by intermittent weight measurement at room temperature. It was observed that the coating could substantially enhance the oxidation resistance of the steel under these testing conditions, which was attributed to the capability of the iron aluminide phases to form alumina scale on the coating surface through preferential Al oxidation.

关键词:Iron aluminide coatings; pack cementation; oxidation resistance;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号