简介概要

LMD及马氏距离敏感阈值的滚动轴承故障诊断

来源期刊:机械设计与制造2015年第2期

论文作者:葛明涛 董素鸽

文章页码:210 - 213

关键词:滚动轴承;LMD;K-L散度;马氏距离;故障诊断;

摘    要:针对滚动轴承非平稳性的振动信号,提出了基于局部均值分解(Local Mean Decomposition,LMD)及马氏距离敏感阈值的滚动轴承故障诊断方法。首先,对振动信号进行LMD分解,获得一系列乘积函数(Production Function,PF),有的PF分量包含的故障信息多,有的包含的少,为此采用K-L散度法提取出主要PF分量;计算主要PF分量的时域参数指标,将其组合成特征向量,根据马氏距离提出马氏距离敏感阈值来表征不同的故障状态,取多组正常信号的特征向量均值作为标准特征向量,计算未知特征向量与标准特征向量的马氏距离敏感阈值,从而对其故障状态进行识别。试验结果表明,在不同转速下,该方法能够有效的对滚动轴承故障进行识别,且效果较EMD方法好。

详情信息展示

LMD及马氏距离敏感阈值的滚动轴承故障诊断

葛明涛,董素鸽

郑州大学西亚斯国际学院电子工程系

摘 要:针对滚动轴承非平稳性的振动信号,提出了基于局部均值分解(Local Mean Decomposition,LMD)及马氏距离敏感阈值的滚动轴承故障诊断方法。首先,对振动信号进行LMD分解,获得一系列乘积函数(Production Function,PF),有的PF分量包含的故障信息多,有的包含的少,为此采用K-L散度法提取出主要PF分量;计算主要PF分量的时域参数指标,将其组合成特征向量,根据马氏距离提出马氏距离敏感阈值来表征不同的故障状态,取多组正常信号的特征向量均值作为标准特征向量,计算未知特征向量与标准特征向量的马氏距离敏感阈值,从而对其故障状态进行识别。试验结果表明,在不同转速下,该方法能够有效的对滚动轴承故障进行识别,且效果较EMD方法好。

关键词:滚动轴承;LMD;K-L散度;马氏距离;故障诊断;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号