基于模糊遗传算法的数据库异常数据挖掘
来源期刊:控制工程2017年第5期
论文作者:向桢 向守兵
文章页码:947 - 951
关键词:遗传算法;大型数据库;异常数据挖掘;
摘 要:对大型数据库的异常数据准确挖掘是实现数据库系统的故障诊断和检测的关键技术。异常数据具有复杂性和多样性,传统方法难以对其进行准确、有效识别。为了提高异常数据挖掘性能,提出一种基于改进模糊遗传算法的大型数据库异常数据挖掘算法。构建大型数据库的异常数据信息特征模型,数据训练样本在进行遗传迭代状态下执行更新平滑,依据平方差函数值较小为原则更新簇的中心点,求得异常数据的功率谱密度函数作为特征,进行异常数据特征优选,计算异常数据流信息聚焦在多层空间模糊聚类中心,将训练集与所属的类别进行关联,得到异常数据的属性集分类和信息增益,从而提高数据的挖掘性能。仿真实验结果表明,该算法具有较高的异常数据检测和挖掘性能,挖掘识别能力优于传统模型,具有较好的应用价值。
向桢,向守兵
四川工程职业技术学院
摘 要:对大型数据库的异常数据准确挖掘是实现数据库系统的故障诊断和检测的关键技术。异常数据具有复杂性和多样性,传统方法难以对其进行准确、有效识别。为了提高异常数据挖掘性能,提出一种基于改进模糊遗传算法的大型数据库异常数据挖掘算法。构建大型数据库的异常数据信息特征模型,数据训练样本在进行遗传迭代状态下执行更新平滑,依据平方差函数值较小为原则更新簇的中心点,求得异常数据的功率谱密度函数作为特征,进行异常数据特征优选,计算异常数据流信息聚焦在多层空间模糊聚类中心,将训练集与所属的类别进行关联,得到异常数据的属性集分类和信息增益,从而提高数据的挖掘性能。仿真实验结果表明,该算法具有较高的异常数据检测和挖掘性能,挖掘识别能力优于传统模型,具有较好的应用价值。
关键词:遗传算法;大型数据库;异常数据挖掘;