简介概要

Reduced Graphene Oxide Supported Bimetallic CobaltPalladium Nanoparticles with High Catalytic Activity towards Formic Acid Electro-oxidation

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2015年第1期

论文作者:Nanting Li Shaochun Tang Xiangkang Meng

文章页码:30 - 36

摘    要:In this work,we report the growth of uniformly dispersed bimetallic cobalt-palladium nanoparticles(NPs) on reduced graphene oxide(RGO) nanosheets to prepare CoPd-RGO composites via a two-step procedure,where firstly formed Co NPs are used as seeds for the subsequent growth of Pd.The generation of Co NPs on RGO is performed by an in-situ reduction reaction with the reducer ethylene glycol under oil bath at180 ℃.According to composition,size and microstructure analyses,NPs in the resulting CoPd-RGO have an average particle size of 5 nm,and Pd is added to one side of Co NPs,thus forming Co-Pd bimetallic interfaces.The involved formation mechanism is suggested.The composite is used as an electro-catalyst for the formic acid oxidation in alkaline electrolyte,and the catalytic performance is investigated by cyclic voltammetry and chronopotentiometry etc.The results show that the composite has the highest electrocatalytic activity,the best electrochemical stability and the highest resistance to CO poisoning than those of the monometallic composite and commercial Pd black at the same loading.This is due not only to the small size of NPs with Co-Pd bimetallic interfaces providing more active atoms accessible for reactants,but also to the electric synergistic effect between metals and graphene.

详情信息展示

Reduced Graphene Oxide Supported Bimetallic CobaltPalladium Nanoparticles with High Catalytic Activity towards Formic Acid Electro-oxidation

Nanting Li,Shaochun Tang,Xiangkang Meng

Institute of Materials Engineering,National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences,Nanjing University

摘 要:In this work,we report the growth of uniformly dispersed bimetallic cobalt-palladium nanoparticles(NPs) on reduced graphene oxide(RGO) nanosheets to prepare CoPd-RGO composites via a two-step procedure,where firstly formed Co NPs are used as seeds for the subsequent growth of Pd.The generation of Co NPs on RGO is performed by an in-situ reduction reaction with the reducer ethylene glycol under oil bath at180 ℃.According to composition,size and microstructure analyses,NPs in the resulting CoPd-RGO have an average particle size of 5 nm,and Pd is added to one side of Co NPs,thus forming Co-Pd bimetallic interfaces.The involved formation mechanism is suggested.The composite is used as an electro-catalyst for the formic acid oxidation in alkaline electrolyte,and the catalytic performance is investigated by cyclic voltammetry and chronopotentiometry etc.The results show that the composite has the highest electrocatalytic activity,the best electrochemical stability and the highest resistance to CO poisoning than those of the monometallic composite and commercial Pd black at the same loading.This is due not only to the small size of NPs with Co-Pd bimetallic interfaces providing more active atoms accessible for reactants,but also to the electric synergistic effect between metals and graphene.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号