简介概要

Corrosion resistance of nanostructured magnesium hydroxide coating on magnesium alloy AZ31: influence of EDTA

来源期刊:Rare Metals2019年第6期

论文作者:Xiao-Li Fan Yuan-Fang Huo Chang-Yang Li M.Bobby Kannan Xiao-Bo Chen Shao-Kang Guan Rong-Chang Zeng Quan-Li Ma

文章页码:520 - 531

摘    要:A hexagonal nanosheet Mg(OH)2 coating was prepared through a one-step hydrothermal method using LiOH solution as mineralizer and then modified by ethylenediaminetetraacetic acid(EDTA) to minimize the rapid corrosion of AZ31 Mg alloy.The performance of the coating was evaluated using electrochemical technique,hydrogen evolution measurements, nanoscratch test,Fourier-transform infrared spectroscopy(FTIR), X-ray diffraction(XRD) patterns and field-emission scanning electron microscopy(FESEM).The results suggested that the corrosion rate of bare AZ31 Mg alloys was significantly reduced by one and two orders of magnitude through the protection from Mg(OH)2 coating and modification with EDTA(i.e., EDTA-Mg(OH)2 coating), respectively.FESEM micrographs indicated that the modification in EDTA elicits to the formation of an EDTA-Mg(OH)2 composite with a thickness as twice as that of as-prepared Mg(OH)2 coating.Nanoscratch tests revealed strong adhesion between the composite or Mg(OH)2 coating and the substrate.The study of formation and corrosion mechanisms of the coatings manifested that Mg(OH)2 was first formed near the intermetallic compound AlMn particles and gradually covered the entire surface, wherein the AlMn particles played an important role in the coating growth process.And it also proved that EDTA accelerated the formation of Mg(OH)2.

详情信息展示

Corrosion resistance of nanostructured magnesium hydroxide coating on magnesium alloy AZ31: influence of EDTA

Xiao-Li Fan1,Yuan-Fang Huo1,Chang-Yang Li1,M.Bobby Kannan2,Xiao-Bo Chen3,Shao-Kang Guan4,Rong-Chang Zeng1,Quan-Li Ma5

1. College of Material Science and Engineering, Shandong University of Science and Technology2. Biomaterials and Engineering Materials(BEM) Laboratory,College of Science, Technology and Engineering, James Cook University3. School of Engineering, RMIT University4. School of Materials Science and Engineering, Zhengzhou University5. Department of Resources and Civil Engineering, Shandong University of Science and Technology

摘 要:A hexagonal nanosheet Mg(OH)2 coating was prepared through a one-step hydrothermal method using LiOH solution as mineralizer and then modified by ethylenediaminetetraacetic acid(EDTA) to minimize the rapid corrosion of AZ31 Mg alloy.The performance of the coating was evaluated using electrochemical technique,hydrogen evolution measurements, nanoscratch test,Fourier-transform infrared spectroscopy(FTIR), X-ray diffraction(XRD) patterns and field-emission scanning electron microscopy(FESEM).The results suggested that the corrosion rate of bare AZ31 Mg alloys was significantly reduced by one and two orders of magnitude through the protection from Mg(OH)2 coating and modification with EDTA(i.e., EDTA-Mg(OH)2 coating), respectively.FESEM micrographs indicated that the modification in EDTA elicits to the formation of an EDTA-Mg(OH)2 composite with a thickness as twice as that of as-prepared Mg(OH)2 coating.Nanoscratch tests revealed strong adhesion between the composite or Mg(OH)2 coating and the substrate.The study of formation and corrosion mechanisms of the coatings manifested that Mg(OH)2 was first formed near the intermetallic compound AlMn particles and gradually covered the entire surface, wherein the AlMn particles played an important role in the coating growth process.And it also proved that EDTA accelerated the formation of Mg(OH)2.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号