简介概要

双连续C半群概率表示的渐近公式

来源期刊:中国矿业大学学报2013年第5期

论文作者:岳田 宋晓秋

文章页码:893 - 898

关键词:双连续C半群;概率型逼近;渐近公式;

摘    要:基于局部凸拓扑τ的Banach空间上双连续C半群的定义及性质,借助算子值数学期望与Riemann-Stieltjes积分的概念,探讨了Banach空间上双连续C半群的概率表示式;利用Riemann-Stieltjes积分、双连续C半群的Taylor展开公式、Hlder不等式及适当的随机变量矩生成函数,研究了双连续C半群的概率型收敛速度估计式,得到了一般性的概率型逼近结论,并针对一些常见的概率分布应用所得的渐近公式把强连续算子半群的一些结果,如Kendall及Chung公式推广到了双连续C半群.结果表明:随机变量的中心矩对渐近式的收敛速度起着重要作用,且二者呈现出负相关的关系.

详情信息展示

双连续C半群概率表示的渐近公式

岳田,宋晓秋

中国矿业大学理学院

摘 要:基于局部凸拓扑τ的Banach空间上双连续C半群的定义及性质,借助算子值数学期望与Riemann-Stieltjes积分的概念,探讨了Banach空间上双连续C半群的概率表示式;利用Riemann-Stieltjes积分、双连续C半群的Taylor展开公式、Hlder不等式及适当的随机变量矩生成函数,研究了双连续C半群的概率型收敛速度估计式,得到了一般性的概率型逼近结论,并针对一些常见的概率分布应用所得的渐近公式把强连续算子半群的一些结果,如Kendall及Chung公式推广到了双连续C半群.结果表明:随机变量的中心矩对渐近式的收敛速度起着重要作用,且二者呈现出负相关的关系.

关键词:双连续C半群;概率型逼近;渐近公式;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号