基于基因表达式编程的PM2.5浓度预测模型研究
来源期刊:江西理工大学学报2013年第5期
论文作者:刘小生 李胜 赵相博
文章页码:1 - 5
关键词:基因表达式编程;PM2.5;预测模型;空气污染;
摘 要:鉴于PM2.5浓度影响因素的复杂性,以及传统预测方法中存在的困难和不足,文中运用基因表达式编程算法,利用北京市2013年3月至4月的PM2.5日平均浓度值以及同步日平均污染物和气象数据,建立了PM2.5浓度预测模型.通过与灰色理论预测模型、BP神经网络预测模型的对比实验分析,发现基于基因表达式编程的预测模型所得到的预测值与实际值之间的误差最小,更能准确地反映样本数据之间的映射关系,预测精度明显高于其他2种预测模型.
刘小生,李胜,赵相博
江西理工大学建筑与测绘工程学院
摘 要:鉴于PM2.5浓度影响因素的复杂性,以及传统预测方法中存在的困难和不足,文中运用基因表达式编程算法,利用北京市2013年3月至4月的PM2.5日平均浓度值以及同步日平均污染物和气象数据,建立了PM2.5浓度预测模型.通过与灰色理论预测模型、BP神经网络预测模型的对比实验分析,发现基于基因表达式编程的预测模型所得到的预测值与实际值之间的误差最小,更能准确地反映样本数据之间的映射关系,预测精度明显高于其他2种预测模型.
关键词:基因表达式编程;PM2.5;预测模型;空气污染;