简介概要

Enhancement of room-temperature magnetoresistance in La0.6Dy0.1Sr0.3MnO3/Agx

来源期刊:Rare Metals2010年第2期

论文作者:SONG Qixianga, NIU Xiaofeia, WANG Guiyinga, TANG Yongganga, CAI Zhiranga, and PENG Zhenshenga, b a Anhui Key Laboratory of Spintronic and Nanometric Materials(Cultivating Base), Suzhou College, Suzhou , China b Structure Research Laboratory, University of Science and Technology of China, Hefei , China

文章页码:126 - 131

摘    要:The samples of La0.6Dy0.1Sr0.3MnO3/(Ag2O)x/2(x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.25, and 0.30) were prepared by using the solid-state reaction method.Their magnetic property, transport behavior, transport mechanism and magnetoresistance effect were studied through the measurements of magnetization-temperature(M-T) curves, ρ-T curves and the fitting of ρ-T curves.The results indicated that Ag could take part in the reaction when the doping amount is small.However, when the doping amount is comparatively large, Ag as metallic state mainly deposits on the grain boundary of La0.6Dy0.1Sr0.3MnO3, and then the system forms a two-phase composite.When the Ag doping amount is 30% mole ratio, the resistivity of the sample is one order of magnitude smaller than that of low doped samples, and its peak of magnetoresistance at 292 K and in the magnetic field of 0.2 T strengthens apparently and reaches 16.3%, which is over 7 times as large as 2.2% of La0.6Dy0.1Sr0.3MnO3.The two-phase composite system of magnetoresistance based on perovskite manganite consists of two parts:intrinsic magnetoresistance and extrinsic magnetoresistance.However, extrinsic magnetoresistance comes from spin-dependent scattering(SDS) and spin-polarized tunneling(SPT).Magnetoresistance near TC increases due to the contribution of intrinsic magnetoresistance and extrinsic magnetoresistance formed by SDS, and magnetoresistance at low temperature is extrinsic magnetoresistance formed by SPT.

详情信息展示

Enhancement of room-temperature magnetoresistance in La0.6Dy0.1Sr0.3MnO3/Agx

SONG Qixianga, NIU Xiaofeia, WANG Guiyinga, TANG Yongganga, CAI Zhiranga, and PENG Zhenshenga, b a Anhui Key Laboratory of Spintronic and Nanometric Materials(Cultivating Base), Suzhou College, Suzhou 234000, China b Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, China

摘 要:The samples of La0.6Dy0.1Sr0.3MnO3/(Ag2O)x/2(x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.25, and 0.30) were prepared by using the solid-state reaction method.Their magnetic property, transport behavior, transport mechanism and magnetoresistance effect were studied through the measurements of magnetization-temperature(M-T) curves, ρ-T curves and the fitting of ρ-T curves.The results indicated that Ag could take part in the reaction when the doping amount is small.However, when the doping amount is comparatively large, Ag as metallic state mainly deposits on the grain boundary of La0.6Dy0.1Sr0.3MnO3, and then the system forms a two-phase composite.When the Ag doping amount is 30% mole ratio, the resistivity of the sample is one order of magnitude smaller than that of low doped samples, and its peak of magnetoresistance at 292 K and in the magnetic field of 0.2 T strengthens apparently and reaches 16.3%, which is over 7 times as large as 2.2% of La0.6Dy0.1Sr0.3MnO3.The two-phase composite system of magnetoresistance based on perovskite manganite consists of two parts:intrinsic magnetoresistance and extrinsic magnetoresistance.However, extrinsic magnetoresistance comes from spin-dependent scattering(SDS) and spin-polarized tunneling(SPT).Magnetoresistance near TC increases due to the contribution of intrinsic magnetoresistance and extrinsic magnetoresistance formed by SDS, and magnetoresistance at low temperature is extrinsic magnetoresistance formed by SPT.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号