Spectroscopic properties and energy transfer of Nd3+/Ho3+-doped Ga2O3-GeO2 glass by codoping Yb3+ ion
来源期刊:JOURNAL OF RARE EARTHS2016年第4期
论文作者:石冬梅 赵营刚
文章页码:368 - 373
摘 要:This study presented the luminescence properties of Nd3+/Yb3+/Ho3+ dopant ions inside a host based on Ga2O3-GeO2-Li2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass exhibited excellent stability against devitrification with ?T=135 oC. Obvious 543 and 657 nm emissions were observed in Nd3+/Ho3+-codoped sample. The incorporation of Yb3+ into Nd3+/Ho3+-codoped glass system had resulted in enhanced upconversion emission intensity under the excitation of 808 nm and/or 980 nm laser diode(LD). The possible mechanisms and related discussions on this phenomenon were presented. It was noted that the presence of Yb3+ yielded an enhancement about 7 and 11 times in the 543 and 657 nm emission intensities respectively under 808 nm excitation due to the energy transfer from Nd3+ to Ho3+ via Yb3+ ion. Here Yb3+ played a major role as a bridging ion. While enhanced 543 and 657 nm emission intensities under the excitation of 980 nm LD originated from the sensitization effect of Yb3+. Our results showed that Nd3+/Ho3+/Yb3+ triply doped GGL glass might be a promising candidate for the development of visible-laser materials.
石冬梅,赵营刚
Department of Materials Science and Engineering,Luoyang Institute of Science and Technology
摘 要:This study presented the luminescence properties of Nd3+/Yb3+/Ho3+ dopant ions inside a host based on Ga2O3-GeO2-Li2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass exhibited excellent stability against devitrification with ?T=135 oC. Obvious 543 and 657 nm emissions were observed in Nd3+/Ho3+-codoped sample. The incorporation of Yb3+ into Nd3+/Ho3+-codoped glass system had resulted in enhanced upconversion emission intensity under the excitation of 808 nm and/or 980 nm laser diode(LD). The possible mechanisms and related discussions on this phenomenon were presented. It was noted that the presence of Yb3+ yielded an enhancement about 7 and 11 times in the 543 and 657 nm emission intensities respectively under 808 nm excitation due to the energy transfer from Nd3+ to Ho3+ via Yb3+ ion. Here Yb3+ played a major role as a bridging ion. While enhanced 543 and 657 nm emission intensities under the excitation of 980 nm LD originated from the sensitization effect of Yb3+. Our results showed that Nd3+/Ho3+/Yb3+ triply doped GGL glass might be a promising candidate for the development of visible-laser materials.
关键词: