简介概要

Optical performance study of Sr2ZnSi2O7:Eu2+,Dy3+, SrAl2O4:Eu2+,Dy3+ and Y2O2S:Eu3+,Mg2+,Ti4+ ternary luminous fiber

来源期刊:JOURNAL OF RARE EARTHS2016年第12期

论文作者:晋阳 龙啸云 朱亚楠 葛明桥

文章页码:1206 - 1212

摘    要:In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu2+,Dy3+, SrAl2O4:Eu2+,Dy3+ and Y2O2S:Eu3+,Mg2+,Ti4+, which were the common three primary colors materials with long afterglow, were synthesized by high temperature solid state method. The blends of rare earth(RE) luminescent materials have been of interest to reinvest the luminescent characteristics of polyethylene terephtahalate(PET) luminous fiber. The scanning electron microscopy(SEM) and an inversion fluorescence microscope were used to characterize the surface morphology and the dispersion of inclusion. Through analysis of microcosmic morphology, three typical dispersions of luminescent particles were summarized. The X-ray diffraction indicated that the phase structure of fiber samples and crystal structure of luminescence materials kept complete after prilling and spinning. From the fluorescence spectra and CIE 1931 coordinates, it could be found that different combinations of luminous fibers were desired to obtain divers colors emission luminous fiber. And the fiber samples were a light sensation which could induct different excitation wavelengths and convert it down to different colors. The afterglow decay curve and its differential curve were summarized indicating the three decay stages. The decay curve and decay rate curve showed that the contents of Sr2ZnSi2O7:Eu2+,Dy3+, SrAl2O4:Eu2+,Dy3+ and Y2O2S:Eu3+,Mg2+,Ti4+ had obvious influence on the afterglow of fiber samples.

详情信息展示

Optical performance study of Sr2ZnSi2O7:Eu2+,Dy3+, SrAl2O4:Eu2+,Dy3+ and Y2O2S:Eu3+,Mg2+,Ti4+ ternary luminous fiber

晋阳,龙啸云,朱亚楠,葛明桥

School of Textile and Clothing, Jiangnan University

摘 要:In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu2+,Dy3+, SrAl2O4:Eu2+,Dy3+ and Y2O2S:Eu3+,Mg2+,Ti4+, which were the common three primary colors materials with long afterglow, were synthesized by high temperature solid state method. The blends of rare earth(RE) luminescent materials have been of interest to reinvest the luminescent characteristics of polyethylene terephtahalate(PET) luminous fiber. The scanning electron microscopy(SEM) and an inversion fluorescence microscope were used to characterize the surface morphology and the dispersion of inclusion. Through analysis of microcosmic morphology, three typical dispersions of luminescent particles were summarized. The X-ray diffraction indicated that the phase structure of fiber samples and crystal structure of luminescence materials kept complete after prilling and spinning. From the fluorescence spectra and CIE 1931 coordinates, it could be found that different combinations of luminous fibers were desired to obtain divers colors emission luminous fiber. And the fiber samples were a light sensation which could induct different excitation wavelengths and convert it down to different colors. The afterglow decay curve and its differential curve were summarized indicating the three decay stages. The decay curve and decay rate curve showed that the contents of Sr2ZnSi2O7:Eu2+,Dy3+, SrAl2O4:Eu2+,Dy3+ and Y2O2S:Eu3+,Mg2+,Ti4+ had obvious influence on the afterglow of fiber samples.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号