简介概要

基于多种偏置项融合时间信息的协同过滤算法

来源期刊:软件工程2019年第6期

论文作者:李明秀 王淑军 贾如 陈立荣

文章页码:17 - 33

关键词:偏置项;协同过滤;时间因素;Sigmoid函数;流行度函数;

摘    要:协同过滤算法是实现推荐系统最重要的技术之一。随着时间的推移,用户对物品的偏好会不断地发生变化,物品自身的流行度也会随时间不断地发生变化。目前常用的推荐算法如基于邻域的协同过滤算法itemCF、userCF和隐语义模型算法FunkSVD、BiasSVD、SVD++都没有考虑到时间因素对推荐系统推荐质量的影响。而时间信息是一种非常重要的上下文信息,应该在算法中加以利用。本文使用Sigmoid函数和流行度函数将时间因素融入到了BiasSVD算法中,成功的设计出了一个融合时间信息的新算法Time-BiasSVD。在MovieLens数据集上的验证结果表明:该算法与已有协同过滤算法,以及融合时间信息的算法timeSVD++相比,能更准确地预测用户实际评分,提高推荐系统的推荐质量。

详情信息展示

基于多种偏置项融合时间信息的协同过滤算法

李明秀1,王淑军2,贾如1,陈立荣1

1. 内蒙古大学计算机学院2. 天津大学计算机科学与技术学院

摘 要:协同过滤算法是实现推荐系统最重要的技术之一。随着时间的推移,用户对物品的偏好会不断地发生变化,物品自身的流行度也会随时间不断地发生变化。目前常用的推荐算法如基于邻域的协同过滤算法itemCF、userCF和隐语义模型算法FunkSVD、BiasSVD、SVD++都没有考虑到时间因素对推荐系统推荐质量的影响。而时间信息是一种非常重要的上下文信息,应该在算法中加以利用。本文使用Sigmoid函数和流行度函数将时间因素融入到了BiasSVD算法中,成功的设计出了一个融合时间信息的新算法Time-BiasSVD。在MovieLens数据集上的验证结果表明:该算法与已有协同过滤算法,以及融合时间信息的算法timeSVD++相比,能更准确地预测用户实际评分,提高推荐系统的推荐质量。

关键词:偏置项;协同过滤;时间因素;Sigmoid函数;流行度函数;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号