简介概要

基于遗传算法优化的LS-SVM井下场强预测

来源期刊:工矿自动化2016年第12期

论文作者:王安义 郗茜

文章页码:46 - 50

关键词:矿井巷道;场强预测;最小二乘支持向量机;遗传算法;

摘    要:为了进一步研究井下电波传播损耗规律,提高场强覆盖预测准确度,提出使用基于遗传算法优化的最小二乘支持向量机方法对井下巷道的场强进行预测。首先通过软件仿真生成巷道场强数据,并将数据分为训练集和测试集;然后采用最小二乘支持向量机方法对训练集进行学习,并使用遗传算法对最小二乘支持向量机方法的参数选择进行优化,采用测试集对方法性能进行验证;最后将基于遗传算法优化的最小二乘支持向量机方法用于井下巷道的场强预测。仿真实验结果表明,基于遗传算法优化的最小二乘支持向量机方法能够有效提高井下场强预测的精度,可获得较好的预测效果。

详情信息展示

基于遗传算法优化的LS-SVM井下场强预测

王安义,郗茜

西安科技大学通信与信息工程学院

摘 要:为了进一步研究井下电波传播损耗规律,提高场强覆盖预测准确度,提出使用基于遗传算法优化的最小二乘支持向量机方法对井下巷道的场强进行预测。首先通过软件仿真生成巷道场强数据,并将数据分为训练集和测试集;然后采用最小二乘支持向量机方法对训练集进行学习,并使用遗传算法对最小二乘支持向量机方法的参数选择进行优化,采用测试集对方法性能进行验证;最后将基于遗传算法优化的最小二乘支持向量机方法用于井下巷道的场强预测。仿真实验结果表明,基于遗传算法优化的最小二乘支持向量机方法能够有效提高井下场强预测的精度,可获得较好的预测效果。

关键词:矿井巷道;场强预测;最小二乘支持向量机;遗传算法;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号