基于深度残差生成式对抗网络的样本生成方法
来源期刊:控制与决策2020年第8期
论文作者:王星 杜伟 陈吉 陈海涛
文章页码:1887 - 1894
关键词:生成式对抗网络;残差网络;深度学习;对抗训练;RGAN;FID;
摘 要:作为样本生成的重要方法之一,生成式对抗网络(GAN)可以根据任意给定数据集中的数据分布生成样本,但它在实际的训练过程中存在生成样本纹理模糊、训练过程不稳定以及模式坍塌等问题.针对以上问题,在深度卷积生成式对抗网络(DCGAN)的基础上,结合残差网络,设计一种基于深度残差生成式对抗网络的样本生成方法RGAN.该样本生成方法利用残差网络和卷积网络分别构建生成模型和判别模型,并结合正负样本融合训练的学习优化策略进行优化训练.其中:深度残差网络可以恢复出丰富的图像纹理;正负样本融合训练的方式可以增加对抗网络的鲁棒性,有效缓解对抗网络训练不稳定和模式坍塌现象的发生.在102 Category Flower Dataset数据集上设计多个仿真实验,实验结果表明RGAN能有效提高生成样本的质量.
王星,杜伟,陈吉,陈海涛
辽宁工程技术大学电子与信息工程学院
摘 要:作为样本生成的重要方法之一,生成式对抗网络(GAN)可以根据任意给定数据集中的数据分布生成样本,但它在实际的训练过程中存在生成样本纹理模糊、训练过程不稳定以及模式坍塌等问题.针对以上问题,在深度卷积生成式对抗网络(DCGAN)的基础上,结合残差网络,设计一种基于深度残差生成式对抗网络的样本生成方法RGAN.该样本生成方法利用残差网络和卷积网络分别构建生成模型和判别模型,并结合正负样本融合训练的学习优化策略进行优化训练.其中:深度残差网络可以恢复出丰富的图像纹理;正负样本融合训练的方式可以增加对抗网络的鲁棒性,有效缓解对抗网络训练不稳定和模式坍塌现象的发生.在102 Category Flower Dataset数据集上设计多个仿真实验,实验结果表明RGAN能有效提高生成样本的质量.
关键词:生成式对抗网络;残差网络;深度学习;对抗训练;RGAN;FID;