简介概要

一种改进鱼群聚类算法在结构面分组中的应用

来源期刊:东北大学学报(自然科学版)2019年第3期

论文作者:王述红 任艺鹏 陈俊智 张紫杉

文章页码:420 - 424

关键词:人工鱼群算法;岩体结构面;岩体;聚类;边坡;

摘    要:针对结构面产状常规分类方法存在的不足,提出一种新型的结构面分类算法.基于K-Means算法的结构面分类,将人工鱼群算法(artificial fish swarm algorithm,AFSA)与K-Means算法相结合,建立了AFSA-RSK结构面分类算法.利用鱼群算法强大的寻优能力,代替K-Means算法对结构面产状聚心集进行搜寻,并通过K-Means算法进行聚类.聚类完成后,选择相应参数指标对聚类效果进行评价.针对存在的问题,对鱼群算法的步长和视野进行修正,提高寻找聚心集的精度,动态地调整了聚类过程.将改进后的AFSA-RSK算法与其他算法进行比较,结果表明在迭代速度、聚类精度以及内存占比上,改进后的AFSA-RSK算法都要更优,更适合在结构面分组方面的应用.

详情信息展示

一种改进鱼群聚类算法在结构面分组中的应用

王述红1,任艺鹏1,陈俊智2,张紫杉1

1. 东北大学资源与土木工程学院2. 昆明理工大学国土资源学院

摘 要:针对结构面产状常规分类方法存在的不足,提出一种新型的结构面分类算法.基于K-Means算法的结构面分类,将人工鱼群算法(artificial fish swarm algorithm,AFSA)与K-Means算法相结合,建立了AFSA-RSK结构面分类算法.利用鱼群算法强大的寻优能力,代替K-Means算法对结构面产状聚心集进行搜寻,并通过K-Means算法进行聚类.聚类完成后,选择相应参数指标对聚类效果进行评价.针对存在的问题,对鱼群算法的步长和视野进行修正,提高寻找聚心集的精度,动态地调整了聚类过程.将改进后的AFSA-RSK算法与其他算法进行比较,结果表明在迭代速度、聚类精度以及内存占比上,改进后的AFSA-RSK算法都要更优,更适合在结构面分组方面的应用.

关键词:人工鱼群算法;岩体结构面;岩体;聚类;边坡;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号